
Volume 2 / Modules and Services

AFNIX Writing System

Revision 4.0

Amaury C. Darsch

Visit http://www.afnix.org

Copyright © 2025 by Amaury C. Darsch

Contents

Part 1. Modules 1

Chapter 1. Standard Graph Module 3
1. Graph concepts 3
2. Graph construction 3

Chapter 2. Standard Graph Reference 5
1. Object State 6
2. Object Edge 7
3. Object Vertex 8
4. Object Graph 9

Chapter 3. Standard Telecom Module 11
1. Abstract syntax notation 11

Chapter 4. Standard Telecom Reference 13
1. Object AsnNode 14
2. Object AsnOctets 15
3. Object AsnBuffer 16
4. Object AsnNull 17
5. Object AsnEoc 18
6. Object AsnBoolean 19
7. Object AsnInteger 20
8. Object AsnBits 21
9. Object AsnBmps 22
10. Object AsnIas 23
11. Object AsnNums 24
12. Object AsnPrts 25
13. Object AsnUtfs 26
14. Object AsnUnvs 27
15. Object AsnGtm 28
16. Object AsnUtc 29
17. Object AsnSequence 30
18. Object AsnSet 31
19. Object Oid 32
20. Object AsnOid 33
21. Object AsnRoid 34

Chapter 5. Standard Math Module 35
1. Random number 35
2. Primality testing 35
3. Linear algebra 36

iii

iv CONTENTS

Chapter 6. Standard Math Reference 39
1. Object Rvi 40
2. Object Rvector 42

Chapter 7. Standard Networking Module 45
1. IP address 45
2. The Address class 45
3. Transport layers 46
4. TCP client socket 47
5. UDP client socket 48
6. Socket class 49
7. TCP server socket 50
8. UDP server socket 51
9. Low level socket methods 52

Chapter 8. Networking reference 53
1. Object Address 54
2. Object Socket 56
3. Object TcpSocket 59
4. Object TcpClient 60
5. Object TcpServer 61
6. Object Datagram 62
7. Object UdpSocket 63
8. Object UdpClient 64
9. Object UdpServer 65
10. Object Multicast 66

Chapter 9. Standard Network Working Group Module 67
1. The uri class 67
2. Managing a cgi request 68
3. Special functions 68
4. HTTP transaction objects 69
5. HTTP response 70
6. Cookie object 71

Chapter 10. Standard Network Working Group Reference 73
1. Object Uri 74
2. Object UriQuery 76
3. Object UriPath 77
4. Object HttpProto 78
5. Object HttpRequest 80
6. Object HttpResponse 82
7. Object Cookie 84
8. Object Session 86

Chapter 11. Standard Security Module 89
1. Hash objects 89
2. Cipher key principles 90
3. Symmetric cipher key 91
4. Asymmetric cipher key 92
5. Message authentication key 92
6. Stream cipher 93
7. Block cipher 94

CONTENTS v

8. Input cipher 95
9. Asymmetric cipher 95
10. Signature objects 96

Chapter 12. Standard Security Reference 99
1. Object Hasher 100
2. Object Md2 101
3. Object Md4 102
4. Object Md5 103
5. Object Sha1 104
6. Object Sha224 105
7. Object Sha256 106
8. Object Sha384 107
9. Object Sha512 108
10. Object Key 109
11. Object Kdf 111
12. Object Hkdf 112
13. Object Kdf1 113
14. Object Kdf2 114
15. Object Cipher 115
16. Object BlockCipher 116
17. Object InputCipher 117
18. Object Aes 119
19. Object PublicCipher 120
20. Object Rsa 121
21. Object Signer 123
22. Object Signature 124
23. Object Dsa 125

Chapter 13. Standard Input/Output Module 127
1. Input and output streams 127
2. File stream 129
3. Multiplexing 130
4. Terminal streams 131
5. Directory 132
6. Logtee 133
7. Path name 133

Chapter 14. Standard Input/Output Reference 135
1. Object Transcoder 136
2. Object Stream 138
3. Object InputStream 139
4. Object InputFile 141
5. Object InputMapped 142
6. Object InputString 143
7. Object InputTerm 144
8. Object OutputStream 145
9. Object OutputFile 146
10. Object OutputString 147
11. Object OutputBuffer 148
12. Object OutputTerm 149
13. Object Terminal 150

vi CONTENTS

14. Object Intercom 151
15. Object InputOutput 152
16. Object Selector 153
17. Object Logtee 155
18. Object Pathname 156
19. Object Pathlist 158
20. Object Directory 160
21. Object Logtee 162
22. Object NamedFifo 163
23. Object FileInfo 164

Chapter 15. Standard Spreadsheet Module 165
1. Spreadsheet concepts 165
2. Storage model 165
3. Folio indexation 166
4. Folio object 166
5. Sheet object 167
6. Record object 168
7. Object search 168

Chapter 16. Standard Spreadsheet Reference 171
1. Object Cell 172
2. Object Persist 173
3. Object Record 174
4. Object Sheet 176
5. Object Folio 179
6. Object Index 181
7. Object Xref 183

Chapter 17. Standard System Access Module 185
1. Interpreter information 185
2. System services 186
3. Time and date 186
4. Options parsing 188

Chapter 18. Standard System Access Reference 191
1. Object Time 192
2. Object Date 194
3. Object Options 197

Chapter 19. Standard Text Processing Module 201
1. Scanning concepts 201
2. Text scanning 202
3. Text sorting 203
4. Transliteration 203

Chapter 20. Standard Text Processing Reference 205
1. Object Pattern 206
2. Object Lexeme 208
3. Object Scanner 209
4. Object Literate 210

Chapter 21. Standard XML Module 213

CONTENTS vii

1. XML tree representation 213
2. Document reading 214
3. Node tree operations 215
4. Node location and searching 216
5. Simple model node 217
6. Document reading 218

Chapter 22. Standard XML Reference 219
1. Object XmlNode 220
2. Object XmlTag 223
3. Object XmlText 224
4. Object XmlData 225
5. Object XmlComment 226
6. Object XmlDoctype 227
7. Object XmlPi 228
8. Object XmlDecl 229
9. Object XmlRef 230
10. Object XmlCref 231
11. Object XmlEref 232
12. Object XmlSection 233
13. Object XmlAttlist 234
14. Object XmlRoot 235
15. Object XmlDocument 236
16. Object XmlElement 237
17. Object XmlEntity 238
18. Object XmlGe 239
19. Object XmlPe 240
20. Object XmlReader 241
21. Object Xne 242
22. Object XneTree 243
23. Object XneChild 244
24. Object XsmNode 245
25. Object XsmReader 247
26. Object XsmDocument 248
27. Object XsoInfo 249

Part 2. Services 251

Chapter 23. Standard Content Session Management Service 253
1. General concepts 253

Chapter 24. Standard Content Session Management Reference 255
1. Object Part 256
2. Object Blob 257
3. Object Bloc 258
4. Object Carrier 259
5. Object Delegate 260
6. Object Realm 261
7. Object Session 262

Chapter 25. Web Application Extension Service 265
1. Page service objects 265

viii CONTENTS

2. Page design objects 267
3. Managing table 268

Chapter 26. Web Application Extension Service Reference 271
1. Object XhtmlRoot 272
2. Object XhtmlHtml 273
3. Object XhtmlHead 274
4. Object XhtmlBody 275
5. Object XhtmlTitle 276
6. Object XhtmlMeta 277
7. Object XhtmlLink 278
8. Object XhtmlStyle 279
9. Object XhtmlScript 280
10. Object XhtmlPara 281
11. Object XhtmlEmph 282
12. Object XhtmlRef 283
13. Object XhtmlImg 284
14. Object XhtmlDiv 285
15. Object XhtmlPre 286
16. Object XhtmlHr 287
17. Object XhtmlCgr 288
18. Object XhtmlCol 289
19. Object XhtmlTh 290
20. Object XhtmlTd 291
21. Object XhtmlTr 292
22. Object XhtmlTelem 293
23. Object XhtmlThead 294
24. Object XhtmlTbody 295
25. Object XhtmlTfoot 296
26. Object XhtmlTable 297
27. Object XmlMime 298
28. Object XhtmlMime 299
29. Object XhtmlForm 300
30. Object XhtmlText 301
31. Object XhtmlSubmit 302

Chapter 27. XML Processing Environment Service 303
1. XML content 303

Chapter 28. XML Processing Environment Service Reference 305
1. Object XmlContent 306
2. Object XmlFeature 307
3. Object XmlProcessor 308
4. Object XmlInclude 309

Index 311

Part 1

Modules

CHAPTER 1

Standard Graph Module

The Standard Graph module is an original implementation dedicated to the graph mod-
eling and manipulation. At the heart of this module is the concept of edges and vertices.
The module also provides support for automaton.

1. Graph concepts

The afnix-gfx module provides the support for manipulating graphs. Formally a graph
is a collection of edges and vertices. In a normal graph, an edge connects two vertices. On
the other hand, a vertex can have several edges. When an edge connects several vertices, it
is called an hyperedge and the resulting structure is called an hypergraph.

1.1. Edge class. The Edge class is a class used for a graph construction in association
with the Vertex class. An edge is used to connect vertices. Normally, an edge connects two
vertices. The number of vertices attached to an edge is called the cardinality of that edge.
When the edge cardinality is one, the edge is called a self-loop. This mean that the edge
connects the vertex to itself. This last point is merely a definition but present the advantage
of defining an hyperedge as a set of vertices.

1.2. Vertex class. The Vertex is the other class used for the graph construction. and
operates with the edge class. A vertex is used to reference edges. the number of edges
referenced by a vertex is called the degree of that vertex.

1.3. Graph. The Graph class is class that represent either a graph or a hypergraph.
By definition, a graph is collection of edges and vertices. There are numerous property
attached to graph. Formally, a graph consists of a set of edges, a set of vertices and the
associated endpoints. However, the implementation is designed in a way so that each edge
and vertex carry its associated objects. This method ensures that the graph is fully defined
by only its two sets.

2. Graph construction

The graph construction is quite simple and proceed by adding edges and vertices. The
base system does not enforce rules on the graph structure. it is possible to add con connected
vertices as well as unreferenced edges.

2.1. Edge construction. An edge is constructed by simply invoking the default con-
structor. Optionally, a client object can be attached to the edge.

1 # create a default edge
2 const edge (afnix:gfx:Edge)
3 # create an edge with a client object
4 const hello (afnix:gfx:Edge "hello")

The edge-p predicate can be used to check for the object type. When an edge is created
with client object, the get-client method can be used to access that object.

3

4 1. STANDARD GRAPH MODULE

2.2. Vertex construction. A vertex is constructed a way similar to the Edge> object.
The vertex is constructed by simply invoking the default constructor. Optionally, a client
object can be attached to the edge.

1 # create a default vertex
2 const vrtx (afnix:gfx:Vertex)
3 # create an vertex with a client object
4 const world (afnix:gfx:Vertex "world")

The vertex-p predicate can be used to check for the object type. When a vertex is
created with a client object, the get-client method can be used to access that object.

2.3. Graph construction. A graph is constructed by simply adding edges and ver-
tices to it. The graph-p predicate can be use to assert the graph type. the graph class also
supports the concept of client object which can be attached at construction or with the
set-client method.

1 const graph (afnix:gfx:Graph)

The add method can be used to add edges or vertices to the graph. The important
point is that during the construction process, the graph structure is updated with the
proper number of edge and vertices.

1 # create a graph
2 const g (afnix:gfx:Graph)
3 assert true (afnix:gfx:graph-p g)
4 # create an edge and add vertices
5 const edge (afnix:gfx:Edge)
6 edge:add (afnix:gfx:Vertex "hello")
7 edge:add (afnix:gfx:Vertex "world")
8 assert 2 (edge:degree)
9 # add the edge to the graph and check

10 g:add edge
11 assert 1 (g:number-of-edges)
12 assert 2 (g:number-of-vertices)
13 # check for nodes and edges
14 assert true (afnix:gfx:edge-p (g:get-edge 0))
15 assert true (afnix:gfx:vertex-p (g:get-vertex 0))
16 assert true (afnix:gfx:vertex-p (g:get-vertex 1))

CHAPTER 2

Standard Graph Reference

5

6 2. STANDARD GRAPH REFERENCE

1. Object State

The State class is a class the graph object library. The state is used to model vertex
and edge and can be used seldom in structure like finite automaton.

1.1. Predicate.

• state-p

1.2. Inheritance.

• Serial

1.3. Constructors.

• State → (none)
The State constructor create an empty state.

• State → (Object)
The State constructor create a state edge with a client object.

1.4. Methods.

• clear → none (none)
The clear method clear the state marker.

• get-index → Integer (none)
The get-idex method returns the state index.

• set-idnex → none (Integer)
The set-index method sets the state index.

• get-client → Object (none)
The get-client method returns the state client object. If the client object is not
set, nil is returned.

• set-client → Object (Object)
The set-client method sets the state client object. The object is returned by this
method.

2. OBJECT EDGE 7

2. Object Edge

The Edge class is a class used for a graph construction in association with the Vertex
class. An edge is used to connect vertices. Normally, an edge connects two vertices. The
number of vertices attached to an edge is called the cardinality of that edge. A client object
can also be attached to the class.

2.1. Predicate.

• edge-p

2.2. Inheritance.

• State, Collectable

2.3. Constructors.

• Edge → (none)
The Edge constructor create an empty edge.

• Edge → (Object)
The Edge constructor create an edge with a client object.

2.4. Methods.

• reset → none (none)
The reset method reset all vertices attached to the edge.

• cardinality → Integer (none)
The cardinality method returns the cardinality of the edge. The cardinality of an
edge is the number of attached vertices.

• add → Vertex (Vertex)
The add method attach a vertex to this edge. The method return the argument
vertex.

• get → Vertex (Integer)
The get method returns the attached vertex by index. If the index is out-of range,
and exception is raised.

8 2. STANDARD GRAPH REFERENCE

3. Object Vertex

The Vertex class is a class used for a graph construction in association with the Edge
class. An vertex is an edge node. The number of edges referenced by a vertex is called the
degree of that vertex. A client object can also be attached to the object.

3.1. Predicate.

• vertex-p

3.2. Inheritance.

• State, Collectable

3.3. Constructors.

• Vertex → (none)
The Vertex constructor create an empty vertex.

• Vertex → (Object)
The Vertex constructor create a vertex with a client object.

3.4. Methods.

• reset → none (none)
The reset method reset all edges attached to the vertex.

• degree → Integer (none)
The degree method returns the degree of the vertex. The degree of a vertex is the
number of referenced edges.

• add → Edge (Edge)
The add method references an edge with this vertex. The method return the
argument edge.

• get → Edge (Integer)
The get method returns the referenced edge by index. If the index is out-of range,
and exception is raised.

4. OBJECT GRAPH 9

4. Object Graph

The Graph object is a general graph class that manages a set of edges and vertices. The
graph operates by adding edges and vertices to it.

4.1. Predicate.

• graph-p

4.2. Inheritance.

• Object

4.3. Constructors.

• Graph → (none)
The Graph constructor create an empty graph.

4.4. Methods.

• reset → none (none)
The reset method reset the graph

• clear → none (none)
The clear method clear the graph

• add → Object (Vertex—Edge)
The add method adds a vertex or an edge to the graph. When adding an edge,
the methods check that the source and target vertices are also part of the graph.

CHAPTER 3

Standard Telecom Module

The Standard Telecom module is an original implementation of various standards man-
aged by the International Telecommunictaion Union (ITU). At the heart of this module is
the Abstract Syntax Notation (ASN.1) which is widely used to model data records and store
certificates.

1. Abstract syntax notation

The abstract syntax notation (ASN.1) is standardized by the ITU to express a normal
form of communication. The ASN.1 is in fact the de-facto standard for representing X509
certificate and is the only justification to provide the support for such complex representa-
tion.

1.1. Encoding rules. This implementation supports all encoding forms as defined by
the ITU, namely the Basic Encoding Rule (BER), the Canonical Encoding Rule (CER) and
the Distinguished Encoding Rule (DER). The DER form is by far the most widely used.

1.2. ASN objects. All objects as defined by the ITU are supported in this implemen-
tation, including the ability to create custom OID.

1.3. Using ASN.1 objects. Using ASN.1 object is particularly straightfoward. One
can directly creates a particular object by invoking the appropriate constructor.

1 # create an asn boolean node
2 trans abn (afnix:itu:AsnBoolean true)

Object Description
AsnBoolean Boolean primitive
AsnInteger Integer primitive
AsnBits Bit string
AsnOctets Octet string
AsnBmp Bmp string
AsnIas IA5 string
AsnNums Numeric string
AsnPrts Printable string
AsnUtfs Unicode string
AsnUnvs Universal string
AsneNull Null primitive
AsneEoc End-of-Content primitive
AsnGtm Generalized time primitive
AsnUtc Utc time primitive
AsnSequence Asn node Sequence
AsnSet Asn node Set
AsnOid Asn object identifier Set
AsnRoid Asn object relative identifier Set

11

12 3. STANDARD TELECOM MODULE

3 # check the node type
4 assert true (afnix:itu:asn-node-p abn)
5 assert true (afnix:itu:asn-boolean-p abn)

Writing the object can be done into a buffer or an output stream. Note that the default
encoding is the DER encoding.

1 # write into a buffer
2 trans buf (Buffer)
3 abn:write buf
4 # check the buffer content
5 assert "0101FF" (buf:format)

Building an ASN.1 representation can be achieved by parsing a buffer or an input
stream. This is done by filling a buffer and requesting a buffer node mapping.

1 # parse the buffer and check
2 const anb (afnix:itu:AsnBuffer buf)
3 # map the node to a boolean
4 trans abn (anb:node-map)
5 # check the node
6 assert true (afnix:itu:asn-node-p abn)
7 assert true (afnix:itu:asn-boolean-p abn)

With more complex structure, it is likely that a sequence object will be returned by the
buffer node mapper. Once the sequence object is created, each node can be accessed by
index like any other container.

CHAPTER 4

Standard Telecom Reference

13

14 4. STANDARD TELECOM REFERENCE

1. Object AsnNode

The AsnNode class is the base class used to represent the asn tree. The structure of the
node is defined in ITU-T X.690 recommendation. This implementation supports 64 bits tag
number with natural machine length encoding. The Canonical Encoding Rule (CER) and
Distinguished Encoding Rule (DER) are defined by the class. Since ASN.1 provides several
encoding schemes, the class is designed to be as generic as possible but does not provides
the mechanism for changing from one representation to another although it is perfectly valid
to read a DER representation and write it in the CER form.

1.1. Predicate.

• asn-node-p

1.2. Inheritance.

• Object

1.3. Constants.

• BER → ()
The BER constant defines the Basic Encoding Rule node encoding.

• CER → ()
The CER constant defines the Canonical Encoding Rule node encoding.

• DER → ()
The DER constant defines the Distinguished Encoding Rule node encoding.

• UNIVERSAL → ()
The UNIVERSAL constant defines the node universal class.

• APPLICATION → ()
The APPLICATION constant defines the node application class.

• CONTEXT-SPECIFIC → ()
The CONTEXT-SPECIFIC constant defines the node context specific class.

• PRIVATE → ()
The PRIVATE constant defines the node private class.

1.4. Methods.

• reset → none (none)
The reset method reset a node to its default value.

• length → Integer (none)
The length method returns the total node length in bytes.

• get-class → UNIVERSAL—APPLICATION—CONTEXT-SPECIFIC—PRIVATE
(none)
The get-class method returns the node class.

• primitive-p → Boolean (none)
The primitive-p returns true if the node is a primitive.

• constructed-p → Boolean (none)
The constructed-p returns true if the node is a constructed node.

• get-tag-number → Integer (none)
The get-tag-number-p returns node tag number.

• get-content-length → Integer (none)
The get-content-length-p returns node content length.

• write → none (none—OutputStream—Buffer)
The write method write the asn node contents as well as the child nodes to an
output stream argument or a buffer. Without argument, the node is written to the
interpreter output stream. With one argument, the node is written to the specified
stream or buffer.

2. OBJECT ASNOCTETS 15

2. Object AsnOctets

The AsnOctets class is the asn object class that encodes the octet string type. This
type can be encoded either as a primitive or as constructed at sender’s option. In CER
form, the primitive form is used when the content length is less than 1000 octets, and the
constructed form is used otherwise. The DER form will always use the primitive form.

2.1. Predicate.

• asn-octets-p

2.2. Inheritance.

• AsnNode

2.3. Constructors.

• AsnOctets → (none)
The AsnOctets constructor creates a default asn octets string node.

• AsnOctets → (String—Buffer)
The AsnOctets constructor creates an asn octets string node by string of buffer
object.

2.4. Methods.

• to-buffer → Buffer (none)
The to-buffer method returns a Buffer object as an octet string representation.

16 4. STANDARD TELECOM REFERENCE

3. Object AsnBuffer

The AsnBuffer class is the asn object class that provides a generic implementation of
an asn structure. The class acts as a simple encoder and decoder with special facilities to
retarget the buffer content.

3.1. Predicate.

• asn-buffer-p

3.2. Inheritance.

• AsnNode

3.3. Constructors.

• AsnBuffer → (none)
The AsnBuffer constructor creates a default asn buffer node.

• AsnBuffer → (InputStream—Buffer—Bitset)
The AsnBuffer constructor creates an asn buffer node from an input stream, a
buffer or a bitset.

3.4. Methods.

• reset → none (none)
The reset method reset the buffer.

• parse → Boolean (InputStream—Buffer—Bitset)
The parse method parse a node represented by an input stream, a buffer or a
bitset.

• node-map → AsnNode (none)
The node-map method returns a node mapping of this buffer.

• get-content-buffer → Buffer (none)
The get-content-buffer method returns the asn buffer content as a buffer object.

4. OBJECT ASNNULL 17

4. Object AsnNull

The AsnNull class is the asn object class that encodes the null primitive. This primitive
has a unique encoding. The length is always 0 and there is no content octet.

4.1. Predicate.

• asn-null-p

4.2. Inheritance.

• AsnNode

4.3. Constructors.

• AsnNull → (none)
The AsnNull constructor creates a default asn null node.

18 4. STANDARD TELECOM REFERENCE

5. Object AsnEoc

The AsnEoc class is the asn object class that encodes the eoc or end-of-content primitive.
This primitive is almost never used but its encoding is used with the indefinite length
encoding.

5.1. Predicate.

• asn-eoc-p

5.2. Inheritance.

• AsnNode

5.3. Constructors.

• AsnEoc → (none)
The AsnEoc constructor creates a default asn eoc node.

6. OBJECT ASNBOOLEAN 19

6. Object AsnBoolean

The AsnBoolean class is the asn object class that encodes the boolean primitive. This
primitive has a unique encoding with the CER or DER rule, but the BER rule can support
any byte value for the true value.

6.1. Predicate.

• asn-boolean-p

6.2. Inheritance.

• AsnNode

6.3. Constructors.

• AsnBoolean → (none)
The AsnBoolean constructor creates a default asn boolean node.

• AsnBoolean → (Boolean)
The AsnBoolean constructor creates an asn boolean node from a boolean object.

6.4. Methods.

• to-boolean → Boolean (none)
The to-boolean method returns a Boolean object as the asn node representation.

20 4. STANDARD TELECOM REFERENCE

7. Object AsnInteger

The AsnInteger class is the asn object class that encodes the integer primitive. This
primitive has a unique encoding with the CER or DER rule. All encoding use a signed
2-complement form.

7.1. Predicate.

• asn-integer-p

7.2. Inheritance.

• AsnNode

7.3. Constructors.

• AsnInteger → (none)
The AsnInteger constructor creates a default asn integer node.

• AsnInteger → (Integer—Relatif)
The AsnInteger constructor creates an asn integer node from an integer or relatif
object.

7.4. Methods.

• to-relatif → Relatif (none)
The to-relatif method returns a Relatif object as the asn node representation.

8. OBJECT ASNBITS 21

8. Object AsnBits

The AsnBits class is the asn object class that encodes the bit string type. This type
can be encoded either as a primitive or as constructed at sender’s option. In CER form, the
primitive form is used when the content length is less than 1000 octets, and the constructed
form is used otherwise. The DER form will always use the primitive form.

8.1. Predicate.

• asn-bits-p

8.2. Inheritance.

• AsnNode

8.3. Constructors.

• AsnBits → (none)
The AsnBits constructor creates a default asn bits node.

• AsnBits → (String—Bitset)
The AsnBits constructor creates an asn bits node from a string or a bitset.

8.4. Methods.

• to-bits → Bitset (none)
The to-bits method returns a Bitset object as a bit string representation.

22 4. STANDARD TELECOM REFERENCE

9. Object AsnBmps

The AsnBmps class is the asn object class that encodes the asn bmp string primitive
also known as the UCS-2 type string. This string is implemented, after conversion as an
octet string. Consequently the rules for encoding in CER and DER modes are applied.

9.1. Predicate.

• asn-bmps-p

9.2. Inheritance.

• AsnOctets

9.3. Constructors.

• AsnBmps → (none)
The AsnBmps constructor creates a default asn string (BMP) node.

• AsnBmps → (String)
The AsnBmps constructor creates an asn string (BMP) node from a string.

9.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

10. OBJECT ASNIAS 23

10. Object AsnIas

The AsnIas class is the asn object class that encodes the IA5 string primitive. This
string is implemented, after conversion as an octet string. Consequently the rules for en-
coding in CER and DER modes are applied.

10.1. Predicate.

• asn-ias-p

10.2. Inheritance.

• AsnOctets

10.3. Constructors.

• AsnIas → (none)
The AsnIas constructor creates a default asn string (IA5) node.

• AsnIas → (String)
The AsnIas constructor creates an asn string (IA5) node from a string.

10.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

24 4. STANDARD TELECOM REFERENCE

11. Object AsnNums

The AsnNums class is the asn object class that encodes the asn numeric string primitive.
This string is implemented, after conversion as an octet string. Consequently the rules for
encoding in CER and DER modes are applied.

11.1. Predicate.

• asn-nums-p

11.2. Inheritance.

• AsnOctets

11.3. Constructors.

• AsnNums → (none)
The AsnNums constructor creates a default asn string (NUMERIC) node.

• AsnNums → (String)
The AsnNums constructor creates an asn string (NUMERIC) node from a string.

11.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

12. OBJECT ASNPRTS 25

12. Object AsnPrts

The AsnPrts class is the asn object class that encodes the asn printable string primitive.
This string is implemented, after conversion as an octet string. Consequently the rules for
encoding in CER and DER modes are applied.

12.1. Predicate.

• asn-prts-p

12.2. Inheritance.

• AsnOctets

12.3. Constructors.

• AsnPrts → (none)
The AsnPrts constructor creates a default asn string (PRINTABLE) node.

• AsnPrts → (String)
The AsnPrts constructor creates an asn string (PRINTABLE) node from a string.

12.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

26 4. STANDARD TELECOM REFERENCE

13. Object AsnUtfs

The AsnUtfs class is the asn object class that encodes the asn utf string primitive. This
string is implemented as an octet string. Consequently the rules for encoding in CER and
DER modes are applied.

13.1. Predicate.

• asn-utfs-p

13.2. Inheritance.

• AsnOctets

13.3. Constructors.

• AsnUtfs → (none)
The AsnUtfs constructor creates a default asn string (UNICODE) node.

• AsnUtfs → (String)
The AsnUtfs constructor creates an asn string (UNICODE) node from a string.

13.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

14. OBJECT ASNUNVS 27

14. Object AsnUnvs

The AsnUnvs class is the asn object class that encodes the universal string primitive
also known as the UCS-4 type string. This string is implemented, after conversion as an
octet string. Consequently the rules for encoding in CER and DER modes are applied.

14.1. Predicate.

• asn-unvs-p

14.2. Inheritance.

• AsnOctets

14.3. Constructors.

• AsnUnvs → (none)
The AsnUnvs constructor creates a default asn string (UNIVERSAL) node.

• AsnUnvs → (String)
The AsnUnvs constructor creates an asn string (UNIVERSAL) node from a string.

14.4. Methods.

• to-string → String (none)
The to-string method returns a String object as a node representation.

28 4. STANDARD TELECOM REFERENCE

15. Object AsnGtm

The AsnGtm class is the asn object class that encodes the generalized time primi-
tive. This primitive is encoded from its equivalent string representation. Although, the
constructed mode is authorized, it does not make that much sense to use it.

15.1. Predicate.

• asn-gtm-p

15.2. Inheritance.

• AsnNode

15.3. Constructors.

• AsnGtm → (none)
The AsnGtm constructor creates a default asn gtm node.

• AsnGtm → (String)
The AsnGtm constructor creates an asn gtm node from a string.

15.4. Methods.

• utc-p → Boolean (none)
The utc-p predicate returns true if the time is expressed in UTC mode.

• to-time → Integer (none)
The to-time method returns a time representation of this asn node.

• to-string → String (none)
The to-string method returns a string representation of this asn node.

16. OBJECT ASNUTC 29

16. Object AsnUtc

The AsnUtc class is the asn object class that encodes the utc time primitive. This
primitive is encoding from its equivalent string representation. Although, the constructed
mode is authorized, it does not make that much sense to use it.

16.1. Predicate.

• asn-utc-p

16.2. Inheritance.

• AsnNode

16.3. Constructors.

• AsnUtc → (none)
The AsnUtc constructor creates a default asn utc node.

• AsnUtc → (String)
The AsnUtc constructor creates an asn utc node from a string.

16.4. Methods.

• utc-p → Boolean (none)
The utc-p predicate returns true if the time is expressed in UTC mode.

• to-time → Integer (none)
The to-time method returns a time representation of this asn node.

• to-string → String (none)
The to-string method returns a string representation of this asn node.

30 4. STANDARD TELECOM REFERENCE

17. Object AsnSequence

The AsnSequence class is the asn object class that encodes the sequence constructed
type. The order of elements is preserved in the encoding of the sequence.

17.1. Predicate.

• asn-sequence-p

17.2. Inheritance.

• AsnNode

17.3. Constructors.

• AsnSequence → (none)
The AsnSequence constructor creates an empty asn sequence node.

17.4. Methods.

• node-length → Integer (none)
The node-length method returns the number of nodes in the sequence.

• node-add → none (AsnNode)
The node-add method adds a node to the sequence.

• node-get → AsnNode (Integer)
The node-get method returns an asn node by index.

18. OBJECT ASNSET 31

18. Object AsnSet

The AsnSet class is the asn object class that encodes the set constructed type. The
order of elements is not important in a set.

18.1. Predicate.

• asn-set-p

18.2. Inheritance.

• AsnNode

18.3. Constructors.

• AsnSet → (none)
The AsnSet constructor creates an empty asn set node.

18.4. Methods.

• node-length → Integer (none)
The node-length method returns the number of nodes in the set.

• node-add → none (AsnNode)
The node-add method adds a node to the set.

• node-get → AsnNode (Integer)
The node-get method returns an asn node by index.

32 4. STANDARD TELECOM REFERENCE

19. Object Oid

The Oid class is a base class that represents the X500 object identifier which is used in
the ASN.1 encoding and in the X509 standard. An oid is simply represented by a vector of
subidentifiers.

19.1. Predicate.

• oid-p

19.2. Inheritance.

• Object

19.3. Constructors.

• Oid → (Integer—...)
The Oid constructor creates an oid from a sequence of integers.

19.4. Methods.

• reset → none (none)
The reset method resets the oid object to its null empty state.

• length → Integer (none)
The length method returns the length of the oid.

• add → none (Integer—...)
The add method adds one or more sub-indentifiers to the oid.

• get → Integer (Integer)
The get method returns an oid sub-identifier by index.

• format → String (none)
The format method returns a string representation of the oid.

20. OBJECT ASNOID 33

20. Object AsnOid

The AsnOid class is the asn object class that encodes the object identifier primitive.
This primitive has a unique encoding with the CER or DER rule. The oid is built as a
vector of subidentifiers (sid). Each sid is represented as an octa (64 bits) value.

20.1. Predicate.

• asn-oid-p

20.2. Inheritance.

• AsnNode

20.3. Constructors.

• AsnOid → (Integer—...)
The AsnOid constructor creates an asn oid from a sequence of sid.

20.4. Methods.

• sid-length → Integer (none)
The length method returns the length of the oid.

• sid-add → none (Integer)
The sid-add method adds a sid the oid object.

• sid-get → Integer (Integer)
The sid-get method returns a sid by oid index.

• get-oid → Oid (none)
The get-oid method returns an oid object as the asn oid representation.

34 4. STANDARD TELECOM REFERENCE

21. Object AsnRoid

The AsnRoid class is the asn object class that encodes the object relative identifier
primitive. This primitive has a unique encoding with the CER or DER rule. The oid is
built as a vector of subidentifiers (sid). Each sid is represented as an octa (64 bits) value.
The difference with the oid object is to be found in the encoding of the first 2 sid.

21.1. Predicate.

• asn-roid-p

21.2. Inheritance.

• AsnNode

21.3. Constructors.

• AsnRoid → (Integer—...)
The AsnRoid constructor creates an asn roid from a sequence of sid.

21.4. Methods.

• sid-length → Integer (none)
The length method returns the length of the oid.

• sid-add → none (Integer)
The sid-add method adds a sid the oid object.

• sid-get → Integer (Integer)
The sid-get method returns a sid by oid index.

• get-oid → Oid (none)
The get-oid method returns an oid object as the asn oid representation.

21.5. Functions.

• asn-random-bits → none (Integer)
The exit function creates a random asn bit string. The argument is the number of
bits in the random string.

• asn-random-octets → none (Integer)
The exit function creates a random asn octet string. The integer argument is the
number of octets in the string.

CHAPTER 5

Standard Math Module

The Standard Mathematical module is an original implementation of various mathemat-
ical facilities. The module can be divided into several catgeories which include convenient
functions, linear algebra and real analysis.

1. Random number

The math module provides various functions that generate random numbers in different
formats.

The numbers are generated with the help of the system random generator. Such gener-
ator is machine dependant and results can vary from one machine to another.

2. Primality testing

The math module provides various predicates that test a number for a primality con-
dition. Most of these predicates are intricate and are normally not used except the prime-
probable-p predicate.

The fermat-p and miller-rabin-p predicates return true if the primality condition is
verified. These predicate operate with a base number. The prime number to test is the
second argument.

2.1. Fermat primality testing. The fermat-p predicate is a simple primality test
based on the ”little Fermat theorem”. A base number greater than 1 and less than the
number to test must be given to run the test.

1 afnix:mth:fermat-p 2 7

In the preceeding example, the number 7 is tested, and the fermat-p predicate returns
true. If a number is prime, it is guaranted to pass the test. The oppositte is not true.
For example, 561 is a composite number, but the Fermat test will succeed with the base

Function Description
get-random-integer return a random integer number
get-random-real return a random real number between 0.0

and 1.0
get-random-relatif return a random relatif number
get-random-prime return a random probable prime relatif

number

Predicate Description
fermat-p Fermat test predicate
miller-rabin-p Miller-Rabin test predicate
prime-probable-p general purpose prime probable test
get-random-prime return a random probable prime relatif

number

35

36 5. STANDARD MATH MODULE

Operator Description
== compare two vectors for equality
!= compare two vectors for difference
?= compare two vectors upto a precision
+= add a scalar or vector to the vector
-= substract a scalar or vector to the vector
*= multiply a scalar or vector to the vector
/= divide a vector by a scalar

Method Description
set set a vector component by index
get get a vector component by index
clear clear a vector
reset reset a vector
get-size get the vector dimension
dot compute the dot product with another vec-

tor
norm compute the vector norm

2. Numbers that successfully pass the Fermat test but which are composite are called
Carmichael numbers. For those numbers, a better test needs to be employed, such like the
Miller-Rabin test.

2.2. Miller-Rabin primality testing. The miller-rabin-p predicate is a complex pri-
mality test that is more efficient in detecting prime number at the cost of a longer compu-
tation. A base number greater than 1 and less than the number to test must be given to
run the test.

1 afnix:mth:miller-rabin-p 2 561

In the preceeding example, the number 561, which is a Carmichael number, is tested, and
the miller-rabin-p predicate returns false. The probability that a number is prime depends
on the number of times the test is ran. Numerous studies have been made to determine the
optimal number of passes that are needed to declare that a number is prime with a good
probability. The prime-probable-p predicate takes care to run the optimal number of passes.

2.3. General primality testing. The prime-probable-p predicate is a complex pri-
mality test that incorporates various primality tests. To make the story short, the prime
candidate is first tested with a series of small prime numbers. Then a fast Fermat test is
executed. Finally, a series of Miller-Rabin tests are executed. Unlike the other primality
tests, this predicate operates with a number only and optionally, the number of test passes.
This predicate is the recommended test for the folks who want to test their numbers.

1 afnix:mth:prime-probable-p 17863

3. Linear algebra

The math module provides an original and extensive support for linear and non lin-
ear algebra. This includes vector, matrix and solvers. Complex methods for non linear
operations are also integrated tightly in this module.

3.1. Real vector. The math module provides the Rvector object which implements
the real vector interface Rvi . Such interface provides numerous operators and methods for
manipulating vectors as traditionnaly found in linear algebra packages.

3. LINEAR ALGEBRA 37

Operator Description
== compare two matrices for equality
!= compare two matrices for difference
?= compare two matrices upto a precision

Method Description
set set a matrix component by index
get get a matrix component by index
clear clear a vector
get-row-size get the matrix row dimension
get-col-size get the matrix column dimension
norm compute the matrix norm

3.2. Creating a vector. A vector is always created by size. A null size is perfectly
valid. When a vector is created, it can be filled by setting the components by index.

1 # create a simple vector
2 const rv (afnix:mth:Rvector 3)
3 # set the components by index
4 rv:set 0 0.0
5 rv:set 1 3.0
6 rv:set 2 4.0

3.3. Real matrix. The math module provides the Rmatrix object which implements
the real matrix interface Rmi . This interface is designed to operate with the vector interface
and can handle sparse or full matrix.

CHAPTER 6

Standard Math Reference

39

40 6. STANDARD MATH REFERENCE

1. Object Rvi

The Rvi class an abstract class that models the behavior of a real based vector. The
class defines the vector length as well as the accessor and mutator methods.

1.1. Predicate.

• rvi-p

1.2. Inheritance.

• Serial

1.3. Operators.

• == → Boolean (Vector)
The == operator returns true if the calling object is equal to the vector argument.

• != → Boolean (Vector)
The == operator returns true if the calling object is not equal to the vector
argument.

• ?= → Boolean (Vector)
The ?= operator returns true if the calling object is equal to the vector argument
upto a certain precision.

• += → Vector (Real—Vector)
The += operator returns the calling vector by adding the argument object. In
the first form, the real argument is added to all vector components. In the second
form, the vector components are added one by one.

• -= → Vector (Real—Vector)
The -= operator returns the calling vector by substracting the argument object.
In the first form, the real argument is substracted to all vector components. In
the second form, the vector components are substracted one by one.

• *= → Vector (Real—Vector)
The *= operator returns the calling vector by multiplying the argument object.
In the first form, the real argument is multiplied to all vector components. In the
second form, the vector components are multiplied one by one.

• /= → Vector (Real)
The /= operator returns the calling vector by dividing the argument object. The
vector components are divided by the real argument.

1.4. Methods.

• set → None (Integer Real)
The set method sets a vector component by index.

• get → Real (Integer)
The get method gets a vector component by index.

• clear → None (None)
The clear method clears a vector. The dimension is not changed.

• reset → None (None)
The reset method resets a vector. The size is set to 0.

• get-size → Real (None)
The get-size method returns the vector dimension.

• dot → Real (Vector)
The dot method computes the dot product with the vector argument.

• norm → Real (None)
The norm method computes the vector norm.

1. OBJECT RVI 41

• permutate → Vector (Cpi)
The permutate method permutates the vector components with the help of a com-
binatoric permutation object.

• reverse → Vector (Cpi)
The reverse method reverse (permutate) the vector components with the help of
a combinatoric permutation object.

42 6. STANDARD MATH REFERENCE

2. Object Rvector

The Rvector class is the default implementation of the real vector interface.

2.1. Predicate.

• r-vector-p

2.2. Inheritance.

• Rvi

2.3. Constructors.

• Rvector → (None)
The Rvector constructor creates a default null real vector.

• Rvector → (Integer)
The Rvector constructor creates a real vector those dimension is given as the calling
argument.

2.4. Functions.

• get-random-integer → Integer (none—Integer)
The get-random-integer function returns a random integer number. Without ar-
gument, the integer range is machine dependent. With one integer argument, the
resulting integer number is less than the specified maximum bound.

• get-random-real → Real (none—Boolean)
The get-random-real function returns a random real number between 0.0 and 1.0.
In the first form, without argument, the random number is between 0.0 and 1.0
with 1.0 included. In the second form, the boolean flag controls whether or not the
1.0 is included in the result. If the argument is false, the 1.0 value is guaranted to
be excluded from the result. If the argument is true, the 1.0 is a possible random
real value. Calling this function with the argument set to true is equivalent to the
first form without argument.

• get-random-relatif → Relatif (Integer—Integer Boolean)
The get-random-relatif function returns a n bits random positive relatif number.
In the first form, the argument is the number of bits. In the second form, the first
argument is the number of bits and the second argument, when true produce an
odd number, or an even number when false.

• get-random-prime → Relatif (Integer)
The get-random-prime function returns a n bits random positive relatif probable
prime number. The argument is the number of bits. The prime number is gen-
erated by using the Miller-Rabin primality test. As such, the returned number is
declared probable prime. The more bits needed, the longer it takes to generate
such number.

• get-random-bitset → Bitset (Integer)
The get-random-bitset function returns a n bits random bitset. The argument is
the number of bits.

• fermat-p → Boolean (Integer—Relatif Integer—Relatif)
The fermat-p predicate returns true if the little fermat theorem is validated. The
first argument is the base number and the second argument is the prime number
to validate.

• miller-rabin-p → Boolean (Integer—Relatif Integer—Relatif)
The miller-rabin-p predicate returns true if the Miller-Rabin test is validated. The
first argument is the base number and the second argument is the prime number
to validate.

2. OBJECT RVECTOR 43

• prime-probable-p → Boolean (Integer—Relatif [Integer])
The prime-probable-p predicate returns true if the argument is a probable prime.
In the first form, only an integer or relatif number is required. In the second
form, the number of iterations is specified as the second argument. By default, the
number of iterations is specified to 56.

CHAPTER 7

Standard Networking Module

The Standard Networking module is an original implementation of networking facilities
for the Internet Protocol. The module features standard TCP and UDP sockets for point
to point communication as well as multicast socket. Numerous functions and objects for
address manipulation are also included in this module. This module is also designed to
support IP version 6 with certain platforms.

1. IP address

The IP based communication uses a standard address to reference a particular peer.
With IP version 4, the standard dot notation is with 4 bytes. With IP version 6, the
standard semicolon notation is with 16 bytes. The current implementation supports both
versions.

1 127.0.0.1 # ipv4 localhost
2 0:0:0:0:0:0:0:1 # ipv6 localhost

IP address architecture and behavior are described in various documents as listed in the
bibliography.

1.1. Domain name system. The translation between a host name and an IP address
is performed by a resolver which uses the Domain Name System or DNS. Access to the DNS
is automatic with the implementation. Depending on the machine resolver configuration, a
particular domain name translation might result in an IP version 4 or IP version 6 address.
Most of the time, an IP version 4 address is returned.

The mapping between an IP address and a host name returns the associated canonical
name for that IP address. This is the reverse of the preceding operation.

2. The Address class

The Address class allows manipulation of IP address. The constructor takes a string
as its arguments. The argument string can be either an IP address or a host name which
can be qualified or not. When the address is constructed with a host name, the IP address
resolution is done immediately.

2.1. Name to address translation. The most common operation is to translate a
host name to its equivalent IP address. Once the Address object is constructed, the get-
address method returns a string representation of the internal IP address. The following
example prints the IP address of the localhost, that is 127.0.0.1 with IP version 4.

1 # load network module
2 interp:library "afnix-net"
3 # get the localhost address
4 const addr (afnix:net:Address "localhost")
5 # print the ip address
6 println (addr:get-address)

As another example, the get-host-name function returns the host name of the running
machine. The previous example can be used to query its IP address.

45

46 7. STANDARD NETWORKING MODULE

2.2. Address to name translation. The reverse operation of name translation maps
an IP address to a canonical name . It shall be noted that the reverse lookup is not done
automatically, unless the reverse flag is set in the constructoor. The get-canonical-name
method of the Address class returns such name. Example XNET001.als is a demonstration
program which prints the address original name, the IP address and the canonical name.
Fell free to use it with your favorite site to check the equivalence between the original name
and the canonical name.

1 # print the ip address information of the arguments
2 # usage: axi XNET001.als [hosts ...]
3 # get the network module
4 interp:library "afnix-net"
5 # print the ip address
6 const ip-address-info (host) {
7 try {
8 const addr (afnix:net:Address host true)
9 println "host name : " (addr:get-name)

10 println " ip address : " (addr:get-address)
11 println " canonical name : " (
12 addr:get-canonical-name)
13 # get aliases
14 const size (addr:get-alias-size)
15 loop (trans i 0) (< i size) (i:++) {
16 println " alias address : " (
17 addr:get-alias-address i)
18 println " alias name : " (
19 addr:get-alias-name i)
20 }
21 } (errorln "error: " what:reason)
22 }
23 # get the hosts
24 for (s) (interp:argv) (ip-address-info s)
25 zsh> axi net-0001.als localhost
26 host name : localhost
27 ip address : 127.0.0.1
28 canonical name : localhost

2.3. Address operations. The Address class provides several methods and operators
that ease the address manipulation in a protocol indepedant way. For example, the ==
operator compares two addresses. The ++ operator can also be used to get the next IP
address.

3. Transport layers

The two transport layer protocols supported by the Internet protocol is the TCP, a
full-duplex oriented protocol, and UDP, a datagram protocol. TCP is a reliable protocol
while UDP is not. By reliable, we mean that the protocol provides automatically some
mechanisms for error recovery, message delivery, acknowledgment of reception, etc... The
use of TCP vs. UDP is dictated mostly by the reliability concerns, while UDP reduces the
traffic congestion.

3.1. Service port. In the client-server model, a connection is established between
two hosts. The connections is made via the IP address and the port number. For a given
service, a port identifies that service at a particular address. This means that multiple
services can exist at the same address. More precisely, the transport layer protocol is also
used to distinguish a particular service. The network module provides a simple mechanism
to retrieve the port number, given its name and protocol. The function get-tcp-service and
get-udp-service returns the port number for a given service by name. For example, the
daytime server is located at port number 13.

4. TCP CLIENT SOCKET 47

1 assert 13 (afnix:net:get-tcp-service "daytime")
2 assert 13 (afnix:net:get-udp-service "daytime")

3.2. Host and peer. With the client server model, the only information needed to
identify a particular client or server is the address and the port number. When a client
connects to a server, it specify the port number the server is operating. The client uses a
random port number for itself. When a server is created, the port number is used to bind
the server to that particular port. If the port is already in use, that binding will fail. From
a reporting point of view, a connection is therefore identified by the running host address
and port, and the peer address and port. For a client, the peer is the server. For a server,
the peer is the client.

4. TCP client socket

The TcpClient class creates an TCP client object by address and port. The address can
be either a string or an Address object. During the object construction, the connection is
established with the server. Once the connection is established, the client can use the read
and write method to communicate with the server. The TcpClient class is derived from the
Socket class which is derived from the InputStream and OutputStream classes.

4.1. Day time client. The simplest example is a client socket which communicates
with the daytime server. The server is normally running on all machines and is located at
port 13.

1 # get the network module
2 interp:library "afnix-net"
3 # get the daytime server port
4 const port (afnix:net:get-tcp-service "daytime")
5 # create a tcp client socket
6 const s (afnix:net:TcpClient "localhost" port)
7 # read the data - the server close the connection
8 while (s:valid-p) (println (s:readln))

Example 3201.als in the example directory prints the day time of the local host without
argument or the day time of the argument. Feel free to use it with www.afnix.org . If the
server you are trying to contact does not have a day time server, an exception will be raised
and the program terminates.

1 zsh> axi 3201.als www.afnix.org

4.2. HTTP request example. Another example which illustrates the use of the Tcp-
Client object is a simple client which download a web page. At this stage we are not concern
with the URL but rather the mechanics involved. The request is made by opening a TCP
client socket on port 80 (the HTTP server port) and sending a request by writing some
HTTP commands. When the commands have been sent, the data sent by the server are
read and printed on the standard output. Note that this example is not concerned by error
detection.

1 # fetch an html page by host and page
2 # usage: axi 3203.als [host] [page]
3 # get the network module
4 interp:library "afnix-net"
5 interp:library "afnix-sys"
6 # connect to the http server and issue a request
7 const send-http-request (host page) {
8 # create a client sock on port 80
9 const s (afnix:net:TcpClient host 80)

10 const saddr (s:get-socket-address)
11 # format the request

48 7. STANDARD NETWORKING MODULE

12 s:writeln "GET " page " HTTP/1.1"
13 s:writeln "Host: " (saddr:get-canonical-name)
14 s:writeln "Connection: close"
15 s:writeln "User-Agent: afnix tcp client example"
16 s:newline
17 # write the result
18 while (s:valid-p) (println (s:readln))
19 }
20 # get the argument
21 if (!= (interp:argv:length) 2) (afnix:sys:exit 1)
22 const host (interp:argv:get 0)
23 const page (interp:argv:get 1)
24 # send request
25 send-http-request host page

5. UDP client socket

UDP client socket is similar to TCP client socket. However, due to the unreliable nature
of UDP, UDP clients are somehow more difficult to manage. Since there is no flow control,
it becomes more difficult to assess whether or not a datagram has reached its destination.
The same apply for a server, where a reply datagram might be lost. The UdpClient class is
the class which creates a UDP client object. Its usage is similar to the TcpClient .

5.1. The time client. The UDP time server normally runs on port 37 is the best place
to enable it. A UDP client is created with the UdpClient class. Once the object is created,
the client sends an empty datagram to the server. The server send a reply datagram with
4 bytes, in network byte order, corresponding to the date as of January 1st 1900. Example
3204.als prints date information after contacting the local host time server or the host
specified as the first argument.

1 # get the libraries
2 interp:library "afnix-net"
3 interp:library "afnix-sys"
4 # get the daytime server port
5 const port (afnix:net:get-udp-service "time")
6 # create a client socket and read the data
7 const print-time (host) {
8 # create a udp client socket
9 const s (afnix:net:UdpClient host port)

10 # send an empty datagram
11 s:write
12 # read the 4 bytes data and adjust to epoch
13 const buf (s:read 4)
14 const val (- (buf:get-quad) 2208988800)
15 # format the date
16 const time (afnix:sys:Time val)
17 println (time:format-date) ’ ’ (time:format-time)
18 }
19 # check for one argument or use localhost
20 const host (if (== (interp:argv:length) 0)
21 "localhost" (interp:argv:get 0))
22 print-time host

This example calls for several comments. First the write method without argument
sends an empty datagram. It is the datagram which trigger the server. The read method
reads 4 bytes from the reply datagram and places them in a Buffer object. Since the bytes
are in network byte order, the conversion into an integer value is done with the get-quad
method. Finally, in order to use the Time class those epoch is January 1st 1970, the constant
2208988800 is subtracted from the result. Remember that the time server sends the date
in reference to January 1st 1900. More information about the time server can be found in
RFC738.

6. SOCKET CLASS 49

5.2. More on reliability. The previous example has some inherent problems due to
the unreliability of UDP. If the first datagram is lost, the read method will block indefinitely.
Another scenario which causes the read method to block is the loss of the server reply
datagram. Both problem can generally be fixed by checking the socket with a timeout using
the valid-p method. With one argument, the method timeout and return false. In this case,
a new datagram can be send to the server. Example 3205.als illustrates this point. We
print below the extract of code.

1 # create a client socket and read the data
2 const print-time (host) {
3 # create a udp client socket
4 const s (afnix:net:UdpClient host port)
5 # send an empty datagram until the socket is valid
6 s:write
7 # retransmit datagram each second
8 while (not (s:valid-p 1000)) (s:write)
9 # read the 4 bytes data and adjust to epoch

10 const buf (s:read 4)
11 const val (- (buf:get-quad) 2208988800)
12 # format the date
13 const time (afnix:sys:Time val)
14 println (time:format-date) ’ ’ (time:format-time)
15 }

Note that this solution is a naive one. In the case of multiple datagrams, a sequence
number must be placed because there is no clue about the lost datagram. A simple rule of
thumb is to use TCP as soon as reliability is a concern, but this choice might not so easy.

5.3. Error detection. Since UDP is not reliable, there is no simple solution to detect
when a datagram has been lost. Even worse, if the server is not running, it is not easy to
detect that the client datagram has been lost. In such situation, the client might indefinitely
send datagram without getting an answer. One solution to this problem is again to count
the number of datagram re-transmit and eventually give up after a certain time.

6. Socket class

The Socket class is the base class for both TcpClient and UdpClient . The class provides
methods to query the socket port and address as well as the peer port and address. Note
at this point that the UDP socket is a connected socket. Therefore, these methods will
work fine. The get-socket-address and get-socket-port returns respectively the address and
port of the connected socket. The get-peer-address and get-peer-port returns respectively
the address and port of the connected socket’s peer. Example 3206.als illustrates the use
of these methods.

1 # create a client socket and read the data
2 const print-socket-info (host) {
3 # create a tcp client socket
4 const s (afnix:net:TcpClient host port)
5 # print socket address and port
6 const saddr (s:get-socket-address)
7 const sport (s:get-socket-port)
8 println "socket ip address : " (
9 saddr:get-address)

10 println "socket canonical name : " (
11 saddr:get-canonical-name)
12 println "socket port : " sport
13 # print peer address and port
14 const paddr (s:get-peer-address)
15 const pport (s:get-peer-port)
16 println "peer ip address : " (
17 paddr:get-address)
18 println "peer canonical name : " (

50 7. STANDARD NETWORKING MODULE

19 paddr:get-canonical-name)
20 println "peer port : " pport
21 }

6.1. Socket predicates. The Socket class is associated with the socket-p predicate.
The respective client objects have the tcp-client-p predicate and udp-client-p predicate.

7. TCP server socket

The TcpServer class creates an TCP server object. There are several constructors for the
TCP server. In its simplest form, without port, a TCP server is created on the localhost with
an ephemeral port number (i.e port 0 during the call). With a port number, the TCP server
is created on the localhost . For a multi-homed host, the address to use to run the server can
be specified as the first argument. The address can be either a string or an Address object.
In both cases, the port is specified as the second argument. Finally, a third argument called
the backlog can be specified to set the number of acceptable incoming connection. That is
the maximum number of pending connection while processing a connection. The following
example shows various ways to create a TCP server.

1 trans s (afnix:net:TcpServer)
2 trans s (afnix:net:TcpServer 8000)
3 trans s (afnix:net:TcpServer 8000 5)
4 trans s (afnix:net:TcpServer "localhost" 8000)
5 trans s (afnix:net:TcpServer "localhost" 8000 5)
6 trans s (afnix:net:TcpServer (
7 Address "localhost") 8000)
8 trans s (afnix:net:TcpServer (
9 Address "localhost") 8000 5)

7.1. Echo server example. A simple echo server can be built and tested with the
standard telnet application. The application will echo all lines that are typed with the
telnet client. The server is bound on the port 8000, since ports 0 to 1024 are privileged
ports.

1 # get the network module
2 interp:library "afnix-net"
3 # create a tcp server on port 8000
4 const srv (afnix:net:TcpServer 8000)
5 # wait for a connection
6 const s (srv:accept)
7 # echo the line until the end
8 while (s:valid-p) (s:writeln (s:readln))

The telnet session is then quite simple. The line hello world is echoed by the server.

1 zsh> telnet localhost 8000
2 Trying 127.0.0.1...
3 Connected to localhost.
4 Escape character is ’^]’.
5 hello world
6 ^D

7.2. The accept method. The previous example illustrates the mechanics of a server.
When the server is created, the server is ready to accept connection. The accept method
blocks until a client connect with the server. When the connection is established, the accept
method returns a socket object which can be used to read and write data.

8. UDP SERVER SOCKET 51

7.3. Multiple connections. One problem with the previous example is that the server
accepts only one connection. In order to accept multiple connection, the accept method must
be placed in a loop, and the server operation in a thread (There are some situations where a
new process might be more appropriate than a thread). Example 3302.als illustrates such
point.

1 # get the network module
2 interp:library "afnix-net"
3 # this function echo a line from the client
4 const echo-server (s) {
5 while (s:valid-p) (s:writeln (s:readln))
6 }
7 # create a tcp server on port 8000
8 const srv (afnix:net:TcpServer 8000)
9 # wait for a connection

10 while true {
11 trans s (srv:accept)
12 launch (echo-server s)
13 }

8. UDP server socket

The UdpServer class is similar to the TcpServer object, except that there is no back-
log parameters. In its simplest form, the UDP server is created on the localhost with an
ephemeral port (i.e port 0). With a port number, the server is created on the localhost .
For a multi-homed host, the address used to run the server can be specified as the first
argument. The address can be either a string or an Address object. In both cases, the port
is specified as the second argument.

1 trans s (afnix:net:UdpServer)
2 trans s (afnix:net:UdpServer 8000)
3 trans s (afnix:net:UdpServer "localhost" 8000)
4 trans s (afnix:net:UdpServer (
5 Address "localhost") 8000)

8.1. Echo server example. The echo server can be revisited to work with udp data-
gram. The only difference is the use of the accept method. For a UDP server, the method
return a Datagram object which can be used to read and write data.

1 # get the network module
2 interp:library "afnix-net"
3 # create a udp server on port 8000
4 const srv (afnix:net:UdpServer 8000)
5 # wait for a connection
6 while true {
7 trans dg (srv:accept)
8 dg:writeln (dg:readln)
9 }

8.2. Datagram object. With a UDP server, the accept method returns a Datagram
object. Because a UDP is connection-less, the server has no idea from whom the datagram
is coming until that one has been received. When a datagram arrives, the Datagram object
is constructed with the peer address being the source address. Standard i/o methods can
be used to read or write. When a write method is used, the data are sent back to the peer
in a form of another datagram.

1 # wait for a datagram
2 trans dg (s:accept)
3 # assert datagram type
4 assert true (datagram-p dg)
5 # get contents length

52 7. STANDARD NETWORKING MODULE

6 println "datagram buffer size : " (dg:get-buffer-length)
7 # read a line from this datagram
8 trans line (dg:readln)
9 # send it back to the sender

10 s:writeln line

8.3. Input data buffer. For a datagram, and generally speaking, for a UDP socket,
all input operations are buffered. This means that when a datagram is received, the accept
method places all data in an input buffer. This means that a read operation does not
necessarily flush the whole buffer but rather consumes only the requested character. For
example, if one datagram contains the string hello world . A call to readln will return the
entire string. A call to read will return only the character ’h’. Subsequent call will return
the next available characters. A call like read 5 will return a buffer with 5 characters.
Subsequent calls will return the remaining string. In any case, the get-buffer-length will
return the number of available characters in the buffer. A call to valid-p will return true if
there are some characters in the buffer or if a new datagram has arrived. Care should be
taken with the read method. For example if there is only 4 characters in the input buffer
and a call to read for 10 characters is made, the method will block until a new datagram is
received which can fill the remaining 6 characters. Such situation can be avoided by using
the get-buffer-length and the valid-p methods. Note also that a timeout can be specified
with the valid-p method.

9. Low level socket methods

Some folks always prefer to do everything by themselves. Most of the time for good
reasons. If this is your case, you might have to use the low level socket methods. Instead of
using a client or server class, the implementation let’s you create a TcpSocket or UdpSocket
. Once this done, the bind , connect and other methods can be used to create the desired
connection.

9.1. A socket client. A simple TCP socket client is created with the TcpSocket class.
Then the connect method is called to establish the connection.

1 # create an address and a tcp socket
2 const addr (afnix:net:Address "localhost")
3 const sid (afnix:net:TcpSocket)
4 # connect the socket
5 sid:connect 13 addr

Once the socket is connected, normal read and write operations can be performed. After
the socket is created, it is possible to set some options. A typical one is NO-DELAY which
disable the Naggle algorithm.

1 # create an address and a tcp socket
2 const addr (afnix:net:Address "localhost")
3 const sid (afnix:net:TcpSocket)
4 # disable the naggle algorithm
5 sid:set-option sid:NO-DELAY true
6 # connect the socket
7 sid:connect 13 addr

CHAPTER 8

Networking reference

53

54 8. NETWORKING REFERENCE

1. Object Address

The Address class is the Internet address manipulation class. The class can be used
to perform the conversion between a host name and an IP address. The opposite is also
possible. Finally, the class supports both IP version 4 and IP version 6 address formats.

1.1. Predicate.

• address-p

1.2. Inheritance.

• Object

1.3. Constructors.

• Address → (String)
The Address constructor create an IP address object by name. The name argument
is a string of a host name or a valid IP address representation.

• Address → (String Boolean)
The Address constructor create an IP address object by name and force the reverse
lookup resolution depending on the boolean flag value. The first argument is a
string of a host name or a valid IP address representation. The second argument
is a boolean flag that indicates whether or not reverse lookup must occur during
the construction.

1.4. Operators.

• == → Boolean (Address)
The == operator returns true if the calling object is equal to the address argument.

• != → Boolean (Address)
The != operator returns true if the calling object is not equal to the address
argument.

• < → Boolean (Address)
The < operator returns true if the calling address is less than the address object.

• <= → Boolean (Address)
The <= operator returns true if the calling address is less equal than the address
object.

• > → Boolean (Address)
The > operator returns true if the calling address is greater than the address
object.

• >= → Boolean (Address)
The <= operator returns true if the calling address is greater equal than the
address object.

• ++ → Address (Address)
The ++ operator increments the calling address by one position.

1.5. Methods.

• resolve → String Boolean (none)
The resolve method resolves an host name and eventually performs a reverse
lookup. The first argument is a string of a host name or a valid IP address
representation. The second argument is a boolean flag that indicates whether or
not reverse lookup must occur during the resolution.

• get-name → String (none)
The get-name method returns the original name used during the object construc-
tion.

1. OBJECT ADDRESS 55

• get-address → String (none)
The get-address method returns a string representation of the IP address. The
string representation follows the IP version 4 or IP version 6 preferred formats,
depending on the internal representation.

• get-vector → Vector (none)
The get-vector method returns a vector representation of the IP address. The
vector result follows the IP version 4 or IP version 6 preferred format, depending
on the internal representation.

• get-canonical-name → String (none)
The get-canonical-name method returns a fully qualified name of the address. The
resulting name is obtained by performing a reverse lookup. Note that the name
can be different from the original name.

• get-alias-size → Integer (none)
The get-alias-size method returns the number of aliases for the address. The
number of aliases includes as well the primary resolved name which is located at
index 0.

• get-alias-name → String (Integer)
The get-alias-name method returns a fully qualified name of the address alias by
index. The first argument is the alias index number which must be in the alias
index range. The resulting name is obtained by performing a reverse lookup. Note
that the name can be different from the original name. Using index 0 is equivalent
to call get-canonical-name .

• get-alias-address → String (Integer)
The get-alias-address method returns a string representation of the IP address
alias by index. The first argument is the alias index number which must be in the
alias index range. The string representation follows the IP version 4 or IP version
6 preferred formats, depending on the internal representation. Using index 0 is
equivalent to call get-address .

• get-alias-vector → Vector (Integer)
The get-alias-vector method returns a vector representation of the IP address alias
by index. The first argument is the alias index number which must be in the alias
index range. The vector result follows the IP version 4 or IP version 6 preferred
format, depending on the internal representation. Using index 0 is equivalent to
call get-vector .

1.6. Functions.

• get-loopback → String (none)
The get-loopback function returns the name of the machine loopback. On a UNIX
system, that name is localhost .

• get-tcp-service → String (Integer)
The get-tcp-service function returns the name of the tcp service given its port
number. For example, the tcp service at port 13 is the daytime server.

• get-udp-service → String (Integer)
The get-udp-service function returns the name of the udp service given its port
number. For example, the udp service at port 19 is the chargen server.

56 8. NETWORKING REFERENCE

2. Object Socket

The Socket class is a base class for the AFNIX network services. The class is auto-
matically constructed by a derived class and provide some common methods for all socket
objects.

2.1. Predicate.

• socket-p

2.2. Inheritance.

• InputStreamOutputStream

2.3. Constants.

• REUSE-ADDRESS → ()
The REUSE-ADDRESS constant is used by the set-option method to enable socket
address reuse. This option changes the rules that validates the address used by
bind. It is not recommended to use that option as it decreases TCP reliability.

• BROADCAST → ()
The BROADCAST constant is used by the set-option method to enable broadcast
of packets. This options only works with IP version 4 address. The argument is a
boolean flag only.

• DONT-ROUTE → ()
The DONT-ROUTE constant is used by the set-option method to control if a
packet is to be sent via the routing table. This option is rarely used with AFNIX
. The argument is a boolean flag only.

• KEEP-ALIVE → ()
The KEEP-ALIVE constant is used by the set-option method to check periodically
if the connection is still alive. This option is rarely used with AFNIX . The
argument is a boolean flag only.

• LINGER → ()
The LINGER constant is used by the set-option method to turn on or off the
lingering on close. If the first argument is true, the second argument is the linger
time.

• RCV-SIZE → ()
The RCV-SIZE constant is used by the set-option method to set the receive buffer
size.

• SND-SIZE → ()
The SND-SIZE constant is used by the set-option method to set the send buffer
size.

• HOP-LIMIT → ()
The HOP-LIMIT constant is used by the set-option method to set packet hop
limit.

• MULTICAST-LOOPBACK → ()
The MULTICAST-LOOPBACK constant is used by the set-option method to
control whether or not multicast packets are copied to the loopback. The argument
is a boolean flag only.

• MULTICAST-HOP-LIMIT → ()
The MULTICAST-HOP-LIMIT constant is used by the set-option method to set
the hop limit for multicast packets.

• MAX-SEGMENT-SIZE → ()
The MAX-SEGMENT-SIZE constant is used by the set-option method to set the
TCP maximum segment size.

2. OBJECT SOCKET 57

• NO-DELAY → ()
The NO-DELAY constant is used by the set-option method to enable or disable
the Naggle algorithm.

2.4. Methods.

• bind → none (Integer)
The bind method binds this socket to the port specified as the argument.

• bind → none (Integer Address)
The bind method binds this socket to the port specified as the first argument and
the address specified as the second argument.

• connect → none (Integer Address [Boolean])
The connect method connects this socket to the port specified as the first argument
and the address specified as the second argument. A connected socket is useful
with udp client that talks only with one fixed server. The optional third argument
is a boolean flag that permits to select whether or not the alias addressing scheme
should be used. If the flag is false, the default address is used. If the flag is true,
an attempt is made to connect to the first successful address that is part of the
alias list.

• open-p → Boolean (none)
The open-p predicate returns true if the socket is open. The method checks that
a descriptor is attached to the object. This does not mean that the descriptor is
valid in the sense that one can read or write on it. This method is useful to check
if a socket has not been closed.

• shutdown → Boolean (none—Boolean)
The shutdown method shutdowns or close the connection. Without argument,
the connection is closed without consideration for those symbols attached to the
object. With one argument, the connection is closed in one direction only. If the
mode argument is false, further receive is disallowed. If the mode argument is true,
further send is disallowed. The method returns true on success, false otherwise.

• ipv6-p → Boolean (none)
The ipv6-p predicate returns true if the socket address is an IP version 6 address,
false otherwise.

• get-socket-address → Address (none)
The get-socket-address method returns an address object of the socket. The re-
turned object can be later used to query the canonical name and the ip address.

• get-socket-port → Integer (none)
The get-socket-port method returns the port number of the socket.

• get-socket-authority → String (none)
The get-socket-authority method returns the authority string in the form of an
address and port pair of the socket.

• get-peer-address → Address (none)
The get-peer-address method returns an address object of the socket’s peer. The
returned object can be later used to query the canonical name and the ip address.

• get-peer-port → Integer (none)
The get-peer-port method returns the port number of the socket’s peer.

• get-peer-authority → String (none)
The get-peer-authority method returns the authority string in the form of an ad-
dress and port pair of the socket’s peer.

58 8. NETWORKING REFERENCE

• set-option → Boolean (constant [Boolean—Integer] [Integer])
The set-option method set a socket option. The first argument is the option to
set. The second argument is a boolean value which turn on or off the option. The
optional third argument is an integer needed for some options.

• set-encoding-mode → none (Item—String)
The set-encoding-mode method sets the input and output encoding mode. In the
first form, with an item, the stream encoding mode is set directly. In the second
form, the encoding mode is set with a string and might also alter the stream
transcoing mode.

• set-input-encoding-mode → none (Item—String)
The set-input-encoding-mode method sets the input encoding mode. In the first
form, with an item, the stream encoding mode is set directly. In the second form,
the encoding mode is set with a string and might also alter the stream transcoing
mode.

• get-input-encoding-mode → Item (none)
The get-input-encoding-mode method return the input encoding mode.

• set-output-encoding-mode → none (Item—String)
The set-output-encoding-mode method sets the output encoding mode. In the first
form, with an item, the stream encoding mode is set directly. In the second form,
the encoding mode is set with a string and might also alter the stream transcoing
mode.

• get-output-encoding-mode → Item (none)
The get-output-encoding-mode method return the output encoding mode.

3. OBJECT TCPSOCKET 59

3. Object TcpSocket

The TcpSocket class is a base class for all tcp socket objects. The class is derived from
the Socket class and provides some specific tcp methods. If a TcpSocket is created, the user
is responsible to connect it to the proper address and port.

3.1. Predicate.

• tcp-socket-p

3.2. Inheritance.

• Socket

3.3. Constructors.

• TcpSocket → (none)
The TcpSocket constructor creates a new tcp socket.

3.4. Methods.

• accept → TcpSocket (none)
The accept method waits for incoming connection and returns a TcpSocket object
initialized with the connected peer. The result socket can be used to perform i/o
operations. This method is used by tcp server.

• listen → Boolean (none—Integer)
The listen method initialize a socket to accept incoming connection. Without
argument, the default number of incoming connection is 5. The integer argument
can be used to specify the number of incoming connection that socket is willing to
queue. This method is used by tcp server.

60 8. NETWORKING REFERENCE

4. Object TcpClient

The TcpClient class creates a tcp client by host and port. The host argument can be
either a name or an address object. The port argument is the server port to contact. The
TcpClient class is derived from the TcpSocket class. This class has no specific methods.

4.1. Predicate.

• tcp-client-p

4.2. Inheritance.

• TcpSocket

4.3. Constructors.

• TcpClient → (String Integer)
The TcpClient constructor creates a new tcp client socket by host name and port
number.

5. OBJECT TCPSERVER 61

5. Object TcpServer

The TcpServer class creates a tcp server by port. An optional host argument can be
either a name or an address object. The port argument is the server port to bind. The
TcpServer class is derived from the TcpSocket class. This class has no specific methods.
With one argument, the server bind the port argument on the local host. The backlog can
be specified as the last argument. The host name can also be specified as the first argument,
the port as second argument and eventually the backlog. Note that the host can be either
a string or an address object.

5.1. Predicate.

• tcp-server-p

5.2. Inheritance.

• TcpSocket

5.3. Constructors.

• TcpServer → (none)
The TcpServer constructor creates a default tcp server.

• TcpServer → (Integer)
The TcpServer constructor creates a default tcp server which is bound on the
specified port argument.

• TcpServer → (Integer Integer)
The TcpServer constructor creates a default tcp server which is bound on the
specified port argument. The second argument is the backlog value.

• TcpServer → (String Integer)
The TcpServer constructor creates a tcp server by host name and port number.
The first argument is the host name. The second argument is the port number.

• TcpServer → (String Integer Integer)
The TcpServer constructor creates a tcp server by host name and port number.
The first argument is the host name. The second argument is the port number.
The third argument is the backlog.

62 8. NETWORKING REFERENCE

6. Object Datagram

The Datagram class is a socket class used by udp socket. A datagram is constructed by
the UdpSocket accept method. The purpose of a datagram is to store the peer information
so one can reply to the sender. The datagram also stores in a buffer the data sent by the
peer. This class does not have any constructor nor any specific method.

6.1. Predicate.

• datagram-p

6.2. Inheritance.

• Socket

7. OBJECT UDPSOCKET 63

7. Object UdpSocket

The UdpSocket class is a base class for all udp socket objects. The class is derived from
the Socket class and provides some specific udp methods.

7.1. Predicate.

• udp-socket-p

7.2. Inheritance.

• Socket

7.3. Constructors.

• UdpSocket → (none)
The UdpSocket constructor creates a new udp socket.

7.4. Methods.

• accept → Datagram (none)
The accept method waits for an incoming datagram and returns a Datagram object.
The datagram is initialized with the peer address and port as well as the incoming
data.

64 8. NETWORKING REFERENCE

8. Object UdpClient

The UdpClient class creates a udp client by host and port. The host argument can be
either a name or an address object. The port argument is the server port to contact. The
UdpClient class is derived from the UdpSocket class. This class has no specific methods.

8.1. Predicate.

• udp-client-p

8.2. Inheritance.

• UdpSocket

8.3. Constructors.

• UdpClient → (String Integer)
The UdpClient constructor creates a new udp client by host and port. The first
argument is the host name. The second argument is the port number.

9. OBJECT UDPSERVER 65

9. Object UdpServer

The UdpServer class creates a udp server by port. An optional host argument can be
either a name or an address object. The port argument is the server port to bind. The
UdpServer class is derived from the UdpSocket class. This class has no specific methods.
With one argument, the server bind the port argument on the local host. The host name
can also be specified as the first argument, the port as second argument. Note that the host
can be either a string or an address object.

9.1. Predicate.

• udp-server-p

9.2. Inheritance.

• UdpSocket

9.3. Constructors.

• UdpServer → (none)
The UdpServer constructor creates a default udp server object.

• UdpServer → (String—Address)
The UdpServer constructor creates a udp server object by host. The first argument
is the host name or host address.

• UdpServer → (String—Address Integer)
The UdpServer constructor creates a udp server object by host and port. The
first argument is the host name or host address. The second argument is the port
number.

66 8. NETWORKING REFERENCE

10. Object Multicast

The Multicast class creates a udp multicast socket by port. An optional host argument
can be either a name or an address object. The port argument is the server port to bind.
The Multicast class is derived from the UdpSocket class. This class has no specific methods.
With one argument, the server bind the port argument on the local host. The host name
can also be specified as the first argument, the port as second argument. Note that the host
can be either a string or an address object. This class is similar to the UdpServer class,
except that the socket join the multicast group at construction and leave it at destruction.

10.1. Predicate.

• multicast-p

10.2. Inheritance.

• UdpSocket

10.3. Constructors.

• Multicast → (String—Address)
The Multicast constructor creates a multicast socket object by host. The first
argument is the host name or host address.

• Multicast → (String—Address Integer)
The Multicast constructor creates a multicast socket object by host and port. The
first argument is the host name or host address. The second argument is the port
number.

CHAPTER 9

Standard Network Working Group Module

The Standard Network Working Group module is an original implemtation of the recom-
mendations proposed by the NWG and currently found in the form of Request for Comments
(RFC). Most of the objects are used with networking application, with the most common
one beeing the Universal Resource Identifier (URI) object.

1. The uri class

The Uri class is a base class that parses a Uniform Resource Identifier or uri string and
provides methods to access individual component of that uri. The implementation conforms
to RFC 3986. The URI components are the scheme, the authority, the path, the query and
the fragment. The class also takes care of the character escaping.

1 const uri (afnix:www:Uri "http://www.afnix.org")

An uri can be broken into several components called the scheme , the authority , the
path , optionally the query and the fragment . The Uri class provide a method to retrieve
each component of the parsed uri.

1 const uri (afnix:www:Uri "http://www.afnix.org/")
2 println (uri:get-scheme) # http
3 println (uri:get-authority) # www.afnix.org
4 println (uri:get-path) # /

1.1. Character conversion. The Uri class performs automatically the character con-
version in the input uri. For example, the + character is replaced by a blank. The % character
followed by two hexadecimal values is replaced by the corresponding ASCII character. Note
that this conversion does now apply to the query string.

1.2. Query string. The get-query method returns the query string of the uri. The
query string starts after the ? character. The query string is a series of key-pair values
separated by the & character.

1 const uri (afnix:www:Uri
2 "http://www.afnix.org?name=hello&value=world")
3 println (uri:get-query) # name=hello&value=world

The module also provides the UriQuery class that parses the query string and store
the result in the form of a property list. The query string parse is particularly useful when
writing automated scripts.

1 # create a query string object
2 const qs (afnix:nwg:UriQuery (uri:get-query))
3 # get the name value
4 qs:get-value "name"

67

68 9. STANDARD NETWORK WORKING GROUP MODULE

2. Managing a cgi request

Managing a cgi request involves primarily the parsing of the requesting uri. The uri
generally contains the http referrer as well as parameter which are stored in the form of a
query string. However, depending on the cgi method which can be of type GET or POST
, the treatment is somewhat different.

2.1. Checking the protocol version. In the presence of a cgi protocol, it is always a
good idea to check the protocol version, or at least to put an assertion. The protocol version
is normally CGI/1.1 and is stored in the GATEWAY INTERFACE environment variable.

1 # check the cgi protocol
2 assert "CGI/1.1" (
3 afnix:sys:get-env "GATEWAY_INTERFACE")

2.2. Getting the query string. If the request method is GET , then the query string
is available in the environment variable QUERY STRING . If the request method is POST , the
query string is available in the input stream. The length of the query string is given by the
CONTENT LENGTH environment variable. The following example illustrates the extraction of
the query string.

1 # check the cgi protocol
2 assert "CGI/.1" (
3 afnix:sys:get-env "GATEWAY_INTERFACE")
4 # initialize the query string
5 const query (afnix:sys:get-env "QUERY_STRING")
6 # get the request method
7 const rqm (afnix:sys:get-env "REQUEST_METHOD")
8 # check for a post request and update the query string
9 if (== rqm "POST") {

10 # create a buffer from the content length
11 const len (
12 Integer (afnix:sys:get-env "CONTENT_LENGTH"))
13 # get the standard input stream and read content
14 const is (interp:get-input-stream)
15 const buf (is:read len)
16 # set the query string
17 query:= (buf:to-string)
18 }

2.3. Parsing the query string. The UriQuery class is designed to parse a cgi query
string. Once the string has been parsed, it is possible to perform a query by key since the
class operates with a property list.

1 const query (
2 afnix:www:UriQuery "name=hello&value=world")
3 query:length # 2
4 query:get-value "name" # hello
5 query:get-value "value" # world

The UriQuery class is the foundation to build cgi script. When the library is combined
with the web application management (wam) service, powerful applications can be built
easily.

3. Special functions

Several dedicated functions are available in the library as a way to ease the object
manipulations. Theses functions operate mostly on uri and files as described below.

4. HTTP TRANSACTION OBJECTS 69

3.1. Uri functions. Several functions are designed to ease the uri manipulation. Most
of them operate on the uri name or their associated system name. The normalize-uri-name
function normalizes a string argument by adding a uri scheme if missing in the original
string. If the function detects that the name starts with a host name, the http scheme is
added. If the function detects that the string starts with a path, the file scheme is added.
otherwise, the name argument is left untouched. The system-uri-name function normalizes
the string argument by prioritizing the system name. The function attempts to find a file
that match the sring argument and eventually build a uri file scheme. If the file is not fond,
the normalization process occurs with the normalize-uri-name function.

1 # normalize a uri name
2 trans unm "http://www.afnix.org"
3 assert unm (
4 afnix:nwg:normalize-uri-name unm)
5 assert unm (
6 afnix:nwg:normalize-uri-name "www.afnix.org")
7 assert unm (
8 afnix:nwg:normalize-uri-name "//www.afnix.org")

3.2. Mime functions. Mime functions are dedicated to easee the mainpulation of
media types or mime. A media type is defined by a string in the form of a type and content
value such as text/plain . The mime-value-p predicate returns true if a string mime value is
a valid media type. From a file perspective, the mime-extension-p predicate returns true if
the string extension has a valid media type associated to it. Finally, the extension-to-mime
function can be used to get the string mime value associated with a file extension.

1 # check a media type
2 assert true (afnix:nwg:mime-value-p "text/plain")
3 # check the mime extension predicate
4 assert true (afnix:nwg:mime-extension-p "txt")
5 # check the extension to mime
6 assert "text/plain" (
7 afnix:nwg:extension-to-mime "txt")

4. HTTP transaction objects

The concept of HTTP transactions is defined in RFC 2616. In the client/server ap-
proach, a client issues a request which is answered with a response. A special case arise
when the server is asked to perform some extra works, such like executing a script. In this
case, the answer is called a reply which is formatted into a response when the server does
its job correctly.

The nature of the HTTP objects determines how the associated stream behaves. With
a HTTP request, the object is filled by reading an input stream when operating on the
server side. On the other hand, the request is filled by data when operating on the client
side. With a HTTP response, the opposite situation occurs. The HTTP response is filled by
reading an input stream when operating on the client side and filled by data when operating
on the server side.

4.1. HTTP protocol. The HttpProto class is a base class designed to handle a HTTP
header that is found in both HTTP request and response. The class is built around a
property list that is filled either by parsing an input stream or by processing specific methods.
The HttpProto defines also some methods which are often used with a HTTP request or
response.

70 9. STANDARD NETWORK WORKING GROUP MODULE

5. HTTP response

The HttpResponse class is a class designed to handle a HTTP response. When operating
on the client side, the response object is built by reading an input stream. When operating
on the server side, the response object is built by calling specific methods.

5.1. Creating a server response. A server response is created by specifying the
response status code. By default, a HTTP response is created with the default media type
text/html . If the media type needs to be changed, it can be passed as the second argument
to the response constructor. By default, the empty constructor creates an empty constructor
with a valid status code.

1 #create a valid response
2 const hr (afnix:nwg:HttpResponse 200)

Once the server response is created, it can be augmented with some headed values.
Typically, a server will add some information about the response, such like the content
length, the modification time or a tag. The HttpResponse provides several methods that
ease the generation of these header values.

5.2. Creating a client response. A client response is created by binding an input
stream to a response object. During the construction, the input stream is read and the
HTTP protocol header is filled. It is also during this phase that the status code is processed.
It is therefore important to ensure that a response object is built correctly before attempting
to access it.

1 # create a client response by stream
2 const hr (afnix:nwg:HttpResponse is)

5.3. Reading a client response. When the response has been created, it is important
to check its status code. Most of the time, the response is valid and its content can be read
directly. The status-ok-p predicate returns true if the status code is valid. In such case, a
HTTP stream can be built in order to read the response.

1 # check that a response is valid
2 if (hr:status-ok-p) {
3 # create a http stream
4 const rs (afnix:nwg:HttpStream ht is)
5 # read the response stream
6 while (rs:eos-p) (rs:read)
7 }

Before reading a http stream, it is important to detect and verify the nature of the
response content. The media-type-p predicate returns true if the media type is defined
and the get-media-type method returns the response type in the form of a mime code such
like text/html . Eventually, the character set associated with the media type can also be
detected. The encoding-mode-p predicate and the get-encoding-mode method can be used to
detect the content encoding mode. However, it is worth to note that the HttpStream object
is automatically sets with the proper encoding if it can be found in the response header.

5.4. Special client response. Certain response can sometime contains special status
codes that require a specific treatment. This is the case when the response corresponds to
a http redirection. In this case, the new uri must be fetched to get the desired response.
The location-p predicate returns true if the response corresponds to a http redirect and the
get-location method can be used to get the new location uri. If this situation arises, it is up
to the implementation to decide what to do with the new uri. In most cases, a new request
will be sent to the server.

6. COOKIE OBJECT 71

6. Cookie object

The Cookie object is a special object that can be used during a http session, to post
data to the http client. The idea behind cookies is to be able to maintain some state, during
the user session for some time. A cookie is a name/value pair and eventually an expiration
time. By default, the cookie object are defined for one http client session, but this behavior
can be changed.

6.1. Managing cookies. A cookie is created with a name/value pair and eventually
an expiration time. Such expiration time is called the maximum-age and is automatically
formatted by the object. With two arguments a session cookie is created. With a third
argument as an integer, the constructor set the maximum age in seconds.

1 # create a cookie with name/value
2 const cookie (afnix:nwg:Cookie "cartid" "123456789")

The cookie implementation follows the recommendation of the RFC-2965 for http state
management. The most important point to remember is the interpretation of the maximum
age that differs from one cookie version to another. With version 1, which is the default,
the maximum age is defined relatively in seconds, while it is absolute with version 0.The
maximum age is set either at construction or with the set-max-age method. The set-max-
age method sets the cookie life time in seconds, in reference to the current time. A negative
value is always reset to -1 and defined a session cookie. A 0 value tells the http client to
remove the cookie. The set-path method defines the path for which this cookie apply.

6.2. Adding a cookie. Once the cookie is defined, the set-cookie method of the
HttpResponse object can be used to install the cookie. Combined with the write method,
the cookie can be send to the http client.

CHAPTER 10

Standard Network Working Group Reference

73

74 10. STANDARD NETWORK WORKING GROUP REFERENCE

1. Object Uri

The Uri class is a base object used to parse or build a uniform resource identifier as
defined by RFC 3986. The URI can be built by specifying each component or by parsing a
string. When a string is given in the constructor, the class parses the string and extract all
components. The uri components are the scheme, the authority, the path, the query and
the fragment. The class also takes care of the character escaping.

1.1. Predicate.

• uri-p

1.2. Inheritance.

• Object

1.3. Constructors.

• Uri → (none)
The Uri constructor creates an empty uri object.

• Uri → (String)
The Uri constructor create a uri object by value. The string argument is the uri
to parse at the object construction.

• Uri → (String String Integer)
The Uri constructor create a uri object by scheme host and port. The first ar-
gument is the uri scheme. The second argument is the uri host name. The third
argument is the uri port. The uri base name can be reconstructed from this infor-
mation.

1.4. Methods.

• parse → none (String)
The parse method reset the uri object, parse the string argument and fill the uri
object with the result.

• get-scheme → String (none)
The get-scheme method returns the scheme of the parsed uri object.

• get-authority → String (none)
The get-authority method returns the authority part of the parsed uri.

• get-path → String (none)
The get-path method returns the path of the parsed uri.

• get-path-target → String (none)
The get-path-target method returns the path target of the parsed uri. The path
target is the last element of the uri path.

• get-query → String (none)
The get-query method returns the complete query string of the parsed uri. Note
that characters are not escaped when getting the string.

• get-fragment → String (none)
The get-fragment method returns the complete query string of the parsed uri.

• get-base → String (none)
The get-base method returns the combined uri scheme and authority.

• get-rname → String (none)
The get-rname method returns the reference uri name with the combined uri
scheme, authority and path all percent encoded.

• get-hname → String (none)
The get-hname method returns the combined uri scheme, authority and path.

1. OBJECT URI 75

• get-aname → String (none)
The get-aname method returns the almost combined uri name with the scheme,
authority, path and query.

• add-path → Uri (String)
The add-path method adds a path to the calling uri and returns a new uri with
the new path added to the old one.

• get-href → Uri (String)
The get-href method returns a new uri by eventually combining the string argu-
ment. If the string argument correspond to an uri, the corresponding uri is built.
Otherwise, the string argument is considered as a path to be added to the current
uri in order to build a new uri.

• get-system-path → String (none)
The get-system-path method returns the system path representation of the uri
path. This function works only if the scheme if a file scheme.

• get-path-encoded → String (none)
The get-path-encoded method returns the uri in the encoded form. Normally the
get-path removes the percent-encoded characters which might not be appropriate
with some protocol such like the http protocol. The get-path-encoded returns the
original path. Note that getting the path with getpath and doing a percent coding
might result in a different result since the internal representation uses normalized
string.

• get-host → String (none)
The get-host method returns the authority or path host name if any can be found
with respect to the scheme. With a ftp, http or https scheme, the host is extracted
from the authority. With a mailto scheme, the host is extracted from the path.

• get-port → Integer (none)
The get-port method returns the authority port if any can be found with respect
to the scheme.

76 10. STANDARD NETWORK WORKING GROUP REFERENCE

2. Object UriQuery

The UriQuery class is a simple class that parses a uri query string and build property
list. during the parsing process, a special transliteration process is done as specified by RFC
3986. This class is primarily used with cgi scripts. Note that the string to parse is exactly
the one produced by the get-query method of the Uri class.

2.1. Predicate.

• uri-query-p

2.2. Inheritance.

• Plist

2.3. Constructors.

• UriQuery → (none)
The UriQuery constructor creates an empty uri query object.

• UriQuery → (String)
The UriQuery constructor create a uri object by value. The string argument is
the uri query string to parse at the object construction. The query string is the
one obtained from the get-query method of the Uri class.

2.4. Methods.

• parse → none (String)
The parse method reset the uri query object, parses the string argument and fill
the property list object with the result.

• get-query → String (none)
The get-query method returns the original query string.

3. OBJECT URIPATH 77

3. Object UriPath

The UriPath class is a class designed for the management of file system path associated
with a uri. Typically, this class will be used with a http server or client when an association
between a uri and a file name needs to be made. The general operation principle is to
associate a path with a uri authority. The uri path is then concatanated to produce a new
path. If the uri path is empty, it can be eventually replaced by a file name, known as the
diretory index in the http terminology.

3.1. Predicate.

• uri-path-p

3.2. Inheritance.

• Object

3.3. Constructors.

• UriPath → (none)
The UriPath constructor creates an empty uri path object.

• UriPath → (String)
The UriPath constructor create a uri object by root path. The string argument is
the uri root path.

• UriPath → (String String)
The UriPath constructor create a uri object by root and index. The first string
argument is the uri root path and the second string argument is the directory index
path.

• UriPath → (String String String)
The UriPath constructor create a uri object by root, index and authority. The first
string argument is the uri root path, the second string argument is the directory
index path and the third argument is the authority.

3.4. Methods.

• get-root → String (none)
The get-root method returns the root path.

• get-index → String (none)
The get-index method returns the index path.

• get-authority → String (none)
The get-authority method returns the uri authority.

• map-request-uri → String (none)
The map-request-uri map a request uri into a system path. The string argument
is the request uri. The request uri must be an absolute path. The result string is
the system path build with the root path.

• normalize → String (none)
The normalize method build a system from a request path. The request path is
associated with the root path and then normalized to produce a complete system
path.

78 10. STANDARD NETWORK WORKING GROUP REFERENCE

4. Object HttpProto

The HttpProto class is a base class that ease the deployment of the http protocol. The
base class is built with a property list which is used to define the message header. The class
also defines the write methods which are used to write a message either on an output stream
or into a buffer.

4.1. Predicate.

• http-proto-p

4.2. Inheritance.

• Object

4.3. Methods.

• reset → none (none)
The reset method resets the http protocol object by clearing the protocol version
and header.

• parse → none (none)
The parse method parse the input stream bound to the http protocol. In order
to operate, an input stream must be associated with the protocol object or an
exception is raised. After a stream has been parsed, the protocol version and the
header are set.

• write → none (none—OutputStream—Buffer)
The write method formats and writes the http protocol object to an output stream
or a buffer. Without argument, the default output stream is used. With an
argument, an output stream or a buffer object can be used.

• header-length → Integer (none)
The header-length method returns the number of properties in the header.

• header-exists-p → Boolean (String)
The header-exists-p predicate returns true if the property exists in the header. The
string argument is the property name.

• header-set → none (String Literal)
The header-set method sets a new property to the http header. The first argument
is the property name. The second argument is a literal object which is internally
converted to a string.

• header-get → Property (Integer)
The header-get method returns a property object by index.

• header-map → String (String)
The header-map method returns a property value by name. The string argument
is the property name.

• header-find → Property (String)
The header-find method returns a property object by name. The string argument
is the property name. If the property is not found, the nil object is returned.

• header-lookup → Property (String)
The header-lookup method returns a property object by name. The string argu-
ment is the property name. If the property is not found, an exception is raised.

• header-plist → Plist (none)
The header-plist method returns the header in the form of a property list.

• content-length-p → Boolean (none)
The content-length-p predicate returns true if the content length is defined in the
protocol header.

4. OBJECT HTTPPROTO 79

• get-content-length → Integer (none)
The get-content-length method returns the content length defined in the protocol
header. If the content length is not defined in the header, the null value is returned.

• media-type-p → Boolean (none)
The media-type-p predicate returns true if the content type is defined in the pro-
tocol header.

• get-media-type → String (none)
The get-media-type method returns the media type defined in the protocol header.
If the media type is not defined in the header, the default media type is returned.

• encoding-mode-p → Boolean (none)
The encoding-mode-p predicate returns true if the encoding mode is defined in the
protocol header.

• get-encoding-mode → String (none)
The get-encoding-mode method returns the protocol encoding mode. If the en-
coding mode is not defined in the protocol header, the default encoding mode is
returned.

80 10. STANDARD NETWORK WORKING GROUP REFERENCE

5. Object HttpRequest

The HttpRequest class is a base class designed to handle a http request. The class
operates with the protocol version 1.1 as defined by RFC 2616. For a server request, the
request is built by reading an input stream and setting the request command with its
associated header. For a client request, the request is formatted with a request command
and a eventually a uri. In both cases, the header is filled automatically depending on the
request side.

5.1. Predicate.

• http-request-p

5.2. Inheritance.

• HttpProto

5.3. Constructors.

• HttpRequest → (none)
The HttpRequest constructor creates a default http request. By default, the request
object is built with the GET method and the request uri set to the root value.

• HttpRequest → (String)
The HttpRequest constructor creates a http request object with a specific com-
mand. By default, the request uri is set to root, except for the OPTIONS method

• HttpRequest → (Uri)
The HttpRequest constructor creates a http request object with a uri. The default
request method is GET .

• HttpRequest → (InputStream)
The HttpRequest constructor creates a http request object with a specific input
stream. At construction, the request header is cleared and the input stream is
bound to the object.

• HttpRequest → (String String)
The HttpRequest constructor creates a http request object with a specific method
and a uri name. The first string argument is the request method to use. The
second string argument is the uri attached to the command. Note that the term
uri should be understood as a request uri .

• HttpRequest → (String Uri)
The HttpRequest constructor creates a http request object with a specific method
and a uri. The first string argument is the request method to use. The second
argument is the uri attached to the method.

5.4. Methods.

• set-method → none (String)
The set-method method sets the request method. This method does not check that
the command is a valid HTTP method and thus leaves plenty of room for server
development. As a matter of fact, RFC 2616 does not prohibit the existence of
such extension.

• get-method → String (none)
The get-method method returns the request method string.

• set-uri → none (String)
The set-uri method sets the request uri. The argument string does not have to be
a valid uri string since some commands might accept special string such like ”*”
to indicate all applicable uri.

5. OBJECT HTTPREQUEST 81

• get-uri → String (none)
The get-uri method returns the request uri string.

82 10. STANDARD NETWORK WORKING GROUP REFERENCE

6. Object HttpResponse

The HttpResponse class is a base class designed to handle a http response. The class
operates with the protocol version 1.1 as defined by RFC 2616. For a client response, the
response is built by reading an input stream and setting the response status code with
its associated header. For a server response, the response is formatted with a response
status and additional header information. In both cases, the header is filled automatically
depending on the response side. On the other hand, trying to set some header with an input
stream bound to the response object might render the response object unusable.

6.1. Predicate.

• http-response-p

6.2. Inheritance.

• HttpProto

6.3. Constructors.

• HttpResponse → (none)
The HttpResponse constructor creates a default http response object. The response
is marked valid with a default text/plain media type.

• HttpResponse → (Integer)
The HttpResponse constructor creates a http response object with a status code.
The response code is associated with the default text/plain media type.

• HttpResponse → (InputStream)
The HttpResponse constructor creates a http response object with a specific input
stream. At construction, the response header is cleared and the input stream is
bound to the object.

• HttpResponse → (Integer String)
The HttpResponse constructor creates a http response object with a status code
and a media type. The first argument is the status code. The second argument is
the associated media type.

6.4. Methods.

• set-status-code → none (Integer)
The set-status-code method sets the response status code.

• get-status-code → Integer (none)
The get-status-code method returns the response status code.

• map-status-code → String (none)
The map-status-code method returns a string representation of the response status
code.

• status-ok-p → Boolean (none)
The status-ok-p predicate returns true if the response status code is valid (aka
status 200).

• status-error-p → Boolean (none)
The status-error-p predicate returns true if the response status code is an error
code.

• location-p → Boolean (none)
The location-p predicate returns true is the response status code indicates that a
request should be made at another location. The location can be found with the
get-location method.

• get-location → String (none)
The get-location method returns the location uri found in the response header.
This method is equivalent to a header query.

6. OBJECT HTTPRESPONSE 83

• set-location → none (String)
The set-location method set the redirect location in the response header. The
string argument is the location uri.

• set-cookie → none (Cookie)
The set-cookie method sets a cookie object to the http header. The cookie version
is properly handled by the method.

84 10. STANDARD NETWORK WORKING GROUP REFERENCE

7. Object Cookie

The Cookie class is a special class designed to handle cookie setting within a http
transaction. A cookie is name/value pair that is set by the server and stored by the http
client. Further connection with the client will result with the cookie value transmitted by
the client to the server. A cookie has various parameters that controls its existence and
behavior. The most important one is the cookie maximum age that is defined in seconds.
A null value tells the client to discard the cookie. A cookie without maximum age is valid
only during the http client session. A cookie can be added to the HttpReply object with
the set-cookie method. A cookie can be constructed with a name/value pair. An optional
third argument is the maximum age. The default cookie version is 1 as specified by RFC
2965. With a version 1, the maximum age is interpreted as the number of seconds before
the cookie expires. With version 0, the maximum age is the absolute time.

7.1. Predicate.

• cookie-p

7.2. Inheritance.

• Object

7.3. Constructors.

• Cookie → (String String)
The Cookie constructor creates a cookie with a name value pair. The first argument
is the cookie name. The second argument is the cookie value.

• Cookie → (String String Integer)
The Cookie constructor creates a cookie with a name value pair and a maximum
age. The first argument is the cookie name. The second argument is the cookie
value. The third argument is the cookie maximum age.

7.4. Methods.

• get-version → Integer (none)
The get-version method returns the cookie version.

• set-version → none (Integer)
The set-version method sets the cookie version. The version number can only be
0 or 1.

• get-name → String (none)
The get-name method returns the cookie name. This is the name store on the http
client.

• set-name → none (String)
The set-name method sets the cookie name. This is the name store on the http
client.

• get-value → String (none)
The get-value method returns the cookie value. This is the value stored on the
http client bounded by the cookie name.

• set-value → none (String)
The set-value method sets the cookie value. This is the value store on the http
client bounded by the cookie name.

• get-maximum-age → Integer (none)
The get-maximum-age method returns the cookie maximum age. The default value
is -1, that is, no maximum age is set and the cookie is valid only for the http client
session.

7. OBJECT COOKIE 85

• set-maximum-age → none (Integer)
The set-maximum-age method sets the cookie maximum age. A negative value is
reset to -1. A 0 value tells the http client to discard the cookie. A positive value
tells the http client to store the cookie for the remaining seconds.

• get-path → String (none)
The get-path method returns the cookie path value. The path determines for which
http request the cookie is valid.

• set-path → none (String)
The set-path method sets the cookie path value. The path determines for which
http request the cookie is valid.

• get-domain → String (none)
The get-domain method returns the cookie domain value.

• set-domain → none (String)
The set-domain method sets the cookie domain value. It is string recommended
to use the originator domain name since many http client can reject cookie those
domain name does not match the originator name.

• get-port → Integer (none)
The get-port method returns the cookie port number.

• set-port → none (Integer)
The set-port method sets the cookie port number. This value is not used with a
cookie version 0.

• get-comment → String (none)
The get-comment method returns the cookie comment value.

• set-comment → none (String)
The set-comment method sets the cookie comment value.

• get-comment-url → String (none)
The get-comment-url method returns the cookie comment url value.

• set-comment-url → none (String)
The set-comment-url method sets the cookie comment url value. This value is not
used with cookie version 0.

• get-discard → Boolean (none)
The get-discard method returns the cookie discard flag.

• set-discard → none (Boolean)
The set-discard method sets the cookie discard flag. The discard flag the tells the
user agent to destroy the cookie when it terminates. This value is not used with
cookie version 0.

• get-secure → Boolean (none)
The get-secure method returns the cookie secure flag.

• set-secure → none (Boolean)
The set-secure method sets the cookie secure flag. When a cookie is secured, it is
only returned by the http client if a connection has been secured (i.e use https).

• to-string → String (none)
The to-string method returns a string formatted for the http reply header. Nor-
mally this method should not be called since the set-cookie method of the httpReply
takes care of such thing.

86 10. STANDARD NETWORK WORKING GROUP REFERENCE

8. Object Session

The Session class is a class that defines a session to be associated with a transaction.
The session object is designed to be persistent so that its data information can be retreived
at any time. A session object has also the particularity to have a limited lifetime. A session
object is created by name with an identifier. The session object is designed to hold a variety
of parameters that are suitable for both the authentication and the session lifetime. A
session is primarily defined by name with an optional information string. The session is
generally associated an authentication visa which contains the session identity. The visa
provides a secure mechanism compatible with a single sign on session. A session key is
automatically generated when the session is created. Such key is used to generate a session
hash id which can be used as a cookie value. The cookie name is also stored in the session
object. When a cookie is generated, the session hash name is combined with the session
hash id for the cookie production.

8.1. Predicate.

• session-p

8.2. Inheritance.

• Taggable

8.3. Constructors.

• Session → (String)
The Session constructor creates a session by name. The string argument is the
session name.

• Session → (String String)
The Session constructor creates a session with a name and a user. The first
argument is the session name. The second argument is the session information..

• Session → (String String Integer)
The Session constructor creates a session with a name, a user and a maximum age.
The first argument is the session name. The second argument is the session infor-
martion. The third argument is the session maximum age expressed in seconds.

8.4. Methods.

• expire-p → Boolean (none)
The expire-p predicate returns true if the session has expired.

• set-hash-id → none (String)
The set-hash-id method sets the session hash identifier. The session hash id must
be unique and secured enough so that the session name cannot be derived from it.

• get-hash-id → String (none)
The get-hash-id method returns the session hash identifier.

• set-path → none (String)
The set-path method sets the session path.

• get-path → String (none)
The get-path method returns the session path.

• get-max-age → Integer (none)
The get-max-age method returns the session maximum age.

• set-max-age → none (Integer)
The set-max-age method sets the session maximum age. The maximum age is an
integer in seconds relative to the current time. If the maximum age is set to 0, the
session is closed.

8. OBJECT SESSION 87

• get-remaining-time → Integer (none)
The get-remaining-time method returns the remaining valid session time.

• get-expire-time → Integer (none)
The get-expire-time method returns the session expiration time in seconds. The
expiration time is an absolute time.

• set-expire-time → none (Integer)
The set-expire-time method sets the session expiration time. The expiration time
is an absolute time in seconds.

• get-creation-time → Integer (none)
The get-creation-time method returns the session creation time. The creation time
is an absolute time in seconds.

• get-modification-time → Integer (none)
The get-modification-time method returns the session creation time. The modifi-
cation time is an absolute time in seconds.

• get-cookie → Cookie (name)
The get-cookie method bakes a session cookie. The string argument is the cookie
name those value is the session hash id value.

• close → Cookie (name)
The close method close a session by reseting the session maximum age to 0. The
method returns a cookie that can be used for closing the session on the peer side.
The string argument is the cookie name those value is the session hash id value.

8.5. Functions.

• mime-extension-p → Boolean (String)
The mime-extension-p predicates returns true if a media type extension - mime
extension - is defined. Most of the time, media type extension can be seen as a file
extension.

• mime-value-p → Boolean (String)
The mime-value-p predicates returns true if a media type - mime value - is defined.

• extension-to-mime → String (String [Boolean])
The extension-to-mime function converts a media type extension into a media type.
In the first form, without a second argument, if the media type extension does not
exist, an exception is raised. In the second form, with the second argument set to
true, if the media type extension does not exist, the default media type is returned.
If the flag is set to false, an exception is raised like the first form.

• string-uri-p → Boolean (String)
The string-uri-p predicates returns true if the string argument is a uri.

• normalize-uri-name → String (String)
The normalize-uri-name function normalizes the string argument by adding a uri
scheme if missing in the original string. If the function detects that the name
starts with a host name, the ”http” scheme is added. If the function detects that
the string starts with a path, the ”file” scheme is added. otherwise, the name
argument is left untouched.

• system-uri-name → String (String)
The system-uri-name function normalizes the string argument by prioritizing the
system name. The function attempts to find a file that match the string argument
and eventually build a uri file scheme. If the file is not fond, the normalization
process occurs with the normalize-uri-name function.

• path-uri-name → String (String)
The path-uri-name function normalizes the string argument by extracting a path

88 10. STANDARD NETWORK WORKING GROUP REFERENCE

associated with the uri string. If the string is a valid uri string, the path is the
uri path component. If the uri path is empty, it is normalized to a /. If the string
argument is not a uri string, the string is assumed to be a partial uri and both
query and fragment parts are removed if present.

• normalize-uri-host → String (String)
The normalize-uri-host function normalizes the string argument uri host name.
This function is useful with certain class of host representation which uses extra
characters.

• normalize-uri-port → String (String)
The normalize-uri-port function normalizes the string argument uri port value.
This function is useful with certain class of host representation which uses extra
characters.

CHAPTER 11

Standard Security Module

The Standard Security module is an original implementation of several standards and
techniques used in the field of cryptography. The module provides the objects than en-
ables message hashing, symetric and assymetric ciphers and digital signature computation.
The implementation follows the recommendation from NIST and PKCS and the standard
reference that it implements is always attached to the underlying object.

1. Hash objects

Hashing is the ability to generate an almost unique representation from a string. Al-
though, there is no guarantee that two different string will not produce the same result –
known as a collision – the sophistication of the hashing function attempt to minimize such
eventuality. The hashing process is not reversible. There are several hashing functions avail-
able in the public domain. To name a few, MD5 is the message digest 5 , and SHA is the
secure hash algorithm . The following table illustrates the size of the result with different
hashing functions.

1.1. Hasher object. The Hasher class is a text hashing computation class. The class
computes a hash value from a literal object, a buffer or an input stream. Once computed,
the hash value is stored as an array of bytes that can be retrieved one by one or at all in
the form of a string representation.

1.2. Creating a hasher. Several hasher objects are available in the module. For
example, the Md5 object is the hasher object that implements the MD-5 algorithm. The
constructor does not take any argument.

1 # get a MD-5 hasher
2 const md (afnix:sec:Md5)
3 # check the object
4 afnix:sec:hasher-p md # true

The compute method computes the hash value. For example, the string ”abc” returns
the value "900150983CD24FB0D6963F7D28E17F72" which is 16 bytes long.

1 const hval (md:compute "abc")

Function Result size
MD-2 128 bits
MD-4 128 bits
MD-5 128 bits
SHA-1 160 bits
SHA-224 224 bits
SHA-256 256 bits
SHA-384 384 bits
SHA-512 512 bits

89

90 11. STANDARD SECURITY MODULE

Hasher Size Constructor
SHA-1 160 bits Sha1
SHA-224 224 bits Sha224
SHA-256 256 bits Sha256
SHA-384 384 bits Sha384
SHA-512 512 bits Sha512

Key Description
KSYM Symmetric cipher key
KRSA Asymmetric RSA cipher key
KMAC Message authentication key
KDSA Message signature key

Key Type Description
KSYM byte Byte array size
KRSA bits Modulus size
KMAC byte Byte array size
KDSA bits Signature size

1.3. Creating a SHA hasher. There are several SHA objects that produces results
of different size as indicated in the next table.

The compute method computes the hash value. For example, the string ”abc” returns
with SHA-1 the 20 bytes long value:

"A9993E364706816ABA3E25717850C26C9CD0D89D"

2. Cipher key principles

Cipher key management is an important concept in the ciphering land. In a simple
mode, a key is used by a cipher to encode some data. Although the key can be any sequence
of bytes, it is preferable to have the key built from a specific source such like a pass-phrase.
A cipher key comes basically into two flavors: keys for symmetric ciphers and keys for
asymmetric ciphers. A key for a symmetric cipher is easy to derive and generally follows a
standard process which is independent of the cipher itself. A key for an asymmetric cipher
is more complex to derive and is generally dependent on the cipher itself.

2.1. Key operations. The basic operations associated with a key are the key identifi-
cation by type and size. The key type is an item that identifies the key nature. The get-type
method returns the key type as specified by the table below.

The message authentication key as represented by the KMAC symbol is similar to the
symmetric key. The key type can be obtained with the get-type method.

1 # get the key type
2 const type (key:get-type)

The key size is the canonical size as specified by the key or the cipher specification. The
get-bits returns the key size in bits. The get-size returns the key size in bytes rounded to
the nearest value. The table below describes the nature of the key size returned.

1 const bits (key:get-bits)
2 const size (key:get-size)

3. SYMMETRIC CIPHER KEY 91

Key Argument Description
KSYM none Symmetric key octet string
KRSA RSA-MODULUS RSA modulus octet string
KRSA RSA-PUBLIC-

EXPONENT
RSA public exponent octet
string

KRSA RSA-SECRET-
EXPONENT

RSA secret exponent octet
string

KMAC none Message authentication key
octet string

KDSA DSA-P-PRIME DSA secret prime octet
string

KDSA DSA-Q-PRIME DSA secret prime octet
string

KDSA DSA-SECRET-KEY DSA secret key
KDSA DSA-PUBLIC-KEY DSA public key
KDSA DSA-PUBLIC-

GENERATOR
DSA public generator

2.2. Key representation. Unfortunately, it is not easy to represent a key, since the
representation depends on the key’s type. For example, a symmetric key can be formatted
as a simple octet string. On the other hand, a RSA key has two components; namely the
modulus and the exponent, which needs to be distinguished and therefore making the rep-
resentation more difficult. Other cipher keys are even more complicated. For this reason,
the representation model is a relaxed one. The format method can be called without argu-
ment to obtain an unique octet string representation if this representation is possible. If the
key representation requires some parameters, the format method may accept one or several
arguments to distinguish the key components.

1 # get a simple key representation
2 println (key:format)
3 # get a rsa modulus key representation
4 println (key:format afnix:sec:Key:RSA-MODULUS)

There are other key representations. The natural one is the byte representation for
a symmetric key, while a number based representation is generally more convenient with
asymmetric keys. The get-byte method returns a key byte by index if possible. The get-
relatif-key returns a key value by relatif number if possible.

3. Symmetric cipher key

3.1. Creating a symmetric cipher key. The Key class can be used to create a
cipher key suitable for a symmetric cipher. By default a 128 bits random key is generated,
but the key can be also generated from an octet string.

1 const key (afnix:sec:Key)
2 assert true (afnix:sec:key-p key)

The constructor also supports the use of an octet string representation of the key.

1 # create an octet string key
2 const key (afnix:sec:Key "0123456789ABCDEF")
3 assert true (afnix:sec:key-p key)

92 11. STANDARD SECURITY MODULE

3.2. Symmetric key functions. The basic operation associated with a symmetric
key is the byte extraction. The get-size method can be used to determine the byte key size.
Once the key size has been obtained, the key byte can be accessed by index with the get-byte
method.

1 # create a 256 random symmetric key
2 const key (afnix:sec:Key afnix:sec:Key:KSYM 256)
3 # get the key size
4 const size (key:get-size)
5 # get the first byte
6 const byte (key:get-byte 0)

4. Asymmetric cipher key

An asymmetric cipher key can be generated for a particular asymmetric cipher, such
like RSA. Generally, the key contains several components identified as the public and secret
key components. These components are highly dependent on the cipher type. Under some
circumstances, all components might not be available.

4.1. Creating an asymmetric cipher key. The Key class can be used to create a
specific asymmetric cipher key. Generally, the key is created by type and and bits size.

1 # create a 1024 bits rsa key
2 const key (afnix:sec:Key afnix:sec:Key:KRSA 1024)

An asymmetric cipher key constructor is extremely dependent on the cipher type. For
this reason, there is no constructor that can operate with a pass-phrase.

4.2. Asymmetric key functions. The basic operation associated with a asymmetric
key is the relatif based representation which is generally available for all key components.
For example, in the case of the RSA cipher, the modulus, the public and secret exponents
can be obtained in a relatif number based representation with the help of the get-relatif-key
method.

1 # create a 512 rsa key
2 const key (afnix:sec:Key afnix:sec:Key:KRSA 512)
3 # get the key modulus
4 const kmod (
5 key:get-relatif-key afnix:sec:Key:RSA-MODULUS)
6 # get the public exponent
7 const pexp (
8 key:get-relatif-key afnix:sec:Key:RSA-PUBLIC-EXPONENT)
9 # get the secret exponent

10 const sexp (
11 key:get-relatif-key afnix:sec:Key:RSA-SECRET-EXPONENT)

5. Message authentication key

5.1. Creating a message authentication key. The Key class can also be used to
create a message authentication key suitable for a message authentication code generator or
validator. By default a 128 bits random key is generated, but the key can be also generated
from an octet string.

1 const key (afnix:sec:Key afnix:sec:Key:KMAC)
2 assert true (afnix:sec:key-p key)

The constructor also supports the use of an octet string as a key representation.

1 # create an octet string key
2 const key (
3 afnix:sec:Key afnix:sec:Key:KMAC "0123456789ABCDEF")
4 assert true (afnix:sec:key-p key)

6. STREAM CIPHER 93

5.2. Message authentication key functions. The basic operation associated with
a message authentication key is the byte extraction. The get-size method can be used to
determine the byte key size. Once the key size has been obtained, the key byte can be
accessed by index with the get-byte method.

1 # create a 256 random message authentication key
2 const key (afnix:sec:Key afnix:sec:Key:KMAC 256)
3 # get the key size
4 const size (key:get-size)
5 # get the first byte
6 const byte (key:get-byte 0)

5.3. Signature key functions. The basic operation associated with a signature key
is the relatif based representation which is generally available for all key components. For
example, in the case of the DSA signer, the prime numbers, the public and secret components
can be obtained in a relatif number based representation with the help of the get-relatif-key
method.

1 # create a 1024 dsa key
2 const key (afnix:sec:Key afnix:sec:Key:KDSA)
3 # get the key size
4 const size (key:get-size)
5 # get the secret component
6 const sexp (
7 key:get-relatif-key afnix:sec:Key:DSA-SECRET-KEY)

6. Stream cipher

A stream cipher is an object that encodes an input stream into an output stream. The
data are read from the input stream, encoded and transmitted onto the output stream.
There are basically two types of stream ciphers known as symmetric cipher and asymmetric
cipher.

6.1. Symmetric cipher. A symmetric cipher is a cipher that encodes and decode
data with the same key. Normally, the key is kept secret, and the data are encoded by
block. For this reason, symmetric cipher are also called block cipher. In normal mode, a
symmetric cipher is created with key and the data are encoded from an input stream as long
as they are available. The block size depends on the nature of the cipher. As of today, the
recommended symmetric cipher is the Advanced Encryption Standard or AES, also known
as Rijndael.

6.2. Asymmetric cipher. An asymmetric cipher is a cipher that encodes and decode
data with two keys. Normally, the data are encoded with a public key and decoded with a
private key. In this model, anybody can encode a data stream, but only one person can read
them. Obviously, the model can be reverse to operate in a kind of signature mode, where
only one person can encode the data stream and anybody can read them. Asymmetric
cipher are particularly useful when operating on unsecured channels. In this model, one end
can send its public key as a mean for other people to crypt data that can only be read by the
sender who is supposed to have the private key. As of today, the recommended asymmetric
ciphers are RSA and DH.

6.3. Serial cipher. A serial cipher is a cipher that encodes and decode data on a byte
basis. Normally, the data are encoded and decoded with the same key, thus making the
symmetric cipher key, the ideal candidate for a serial cipher key. Since the data is encoded
on a byte basis, it can be used efficiently with a stream. However, the serial cipher does
not define a block size and therefore require some mechanism to prevent a buffer overrun
when reading bytes from a stream. For this reason, the serial cipher defines a default serial

94 11. STANDARD SECURITY MODULE

block size that can be used to buffer the stream data. A method is provided in the class to
control the buffer size and is by default set to 4Kib bytes.

6.4. Cipher base class. The Cipher base class is an abstract class that supports the
symmetric, asymmetric and serial cipher models. A cipher object has a name and is bound
to a key that is used by the cipher. The class provides some base methods that can be used
to retrieve some information about the cipher. The get-name method returns the cipher
name. The set-key and get-key methods are both used to set or retrieve the cipher key.

The cipher operating mode can be found with the get-reverse method. If the get-reverse
method returns true, the cipher is operating in decoding mode. Note that a set-reverse
method also exists.

7. Block cipher

A block cipher is an object that encodes an input stream with a symmetric cipher bound
to a unique key. Since a block cipher is symmetric, the data can be coded and later decoded
to their original form. The difference with the Cipher base class is that the BlockCipher
class provides a get-block-size method which returns the cipher block size.

7.1. Block Cipher base. The BlockCipher class is a base class for the block cipher
engine. The class implements the stream method that reads from an input stream and write
into an output stream. The BlockCipher class is an abstract class and cannot be instantiated
by itself. The object is actually created by using a cipher algorithm class such like the Aes
class.

1 trans count (cipher:stream os is)

The stream method returns the number of characters that have been encoded. Care
should be taken that most of the stream cipher operates by block and therefore, will block
until a complete block has been read from the input stream, unless the end of stream is
read. The block cipher is always associated with a padding scheme. By default, the NIST
800-38A recommendation is associated with the block cipher, but can be changed with the
set-padding-mode .

7.2. Creating a block cipher. A BlockCipher object can be created with a cipher
constructor. As of today, the Advanced Encryption Standard or AES is the recommended
symmetric cipher. The Aes class creates a new block cipher that conforms to the AES
standard.

1 const cipher (afnix:sec:Aes)

A block cipher can be created with a key and eventually a reverse flag. With one
argument, the block cipher key is associated with the cipher. Such key can be created as
indicated in the previous section. The reverse flag is used to determine if the cipher operate
in encoding or decoding mode. By default, the cipher operates in coding mode.

1 # create a 256 bits random key
2 const key (afnix:sec:Key afnix:sec:KSYM 256)
3 # create an aes block cipher
4 const aes (afnix:sec:Aes key)

7.3. Block cipher information. The BlockCipher class is derived from the Cipher
class and contains several methods that provide information about the cipher. This include
the cipher block size with the get-block-size method.

1 println (aes:get-block-size)

9. ASYMMETRIC CIPHER 95

8. Input cipher

In the presence of a Cipher object, it is difficult to read an input stream and encode
the character of a block basis. Furthermore, the existence of various method for block
padding makes the coding operation even more difficult. For this reason, the InputCipher
class provides the necessary method to code or decode an input stream in various mode of
operations.

8.1. Input cipher mode. The InputCipher class is an input stream that binds an
input stream with a cipher. The class acts like an input stream, read the character from the
bounded input stream and encode or decode them from the bended cipher. The InputCipher
defines several modes of operations. In electronic codebook mode or ECB, the character are
encoded in a block basis. In cipher block chaining mode, the block are encoded by doing
an XOR operation with the previous block. Other modes are also available such like cipher
feedback mode and output feedback mode .

8.2. Creating an input cipher. By default an input cipher is created with a cipher
object. Eventually, an input stream and/or the input mode can be specified at the object
construction.

1 # create a key
2 const key (afnix:sec:Key "hello world")
3 # create a direct cipher
4 const aes (afnix:sec:Aes key)
5 # create an input cipher
6 const ic (afnix:sec:InputCipher aes)

In this example, the input cipher is created in ECB mode. The input stream is later
associated with the set-is method.

8.3. Input cipher operation. The InputCipher class operates with one or several
input streams. The set-is method sets the input stream. Read operation can be made with
the help of the valid-p predicate.

1 while (ic:valid-p) (os:write (ic:read))

Since the InputCipher operates like an input stream, the stream can be read as long as
the valid-p predicate returns true. Note that the InputCipher manages automatically the
padding operations with the mode associated with the block cipher.

9. Asymmetric cipher

A public cipher is an object that encodes an input stream with a asymmetric cipher
bound to a public and secret key. In theory, there is no difference between a block cipher
and a public cipher. Furthermore, the interface provided by the engine is the same for both
objects.

9.1. Public cipher. A public cipher is an asymmetric stream cipher which operates
with an asymmetric key. The main difference between a block cipher and a public cipher
is the key nature as well as the encoded block size. With an asymmetric cipher, the size of
the message to encode is generally not the same as the encoded block, because a message
padding operation must occurs for each message block.

1 trans count (cipher:stream os is)

The stream method returns the number of characters that have been encoded. Like the
block cipher, the stream method encodes an input stream or a buffer object. The number
of encoded bytes is returned by the method.

96 11. STANDARD SECURITY MODULE

Cipher Padding mode Default
RSA PKCS 1.5, PKCS 2.1,

ISO/IEC 18033-2
PKCS 1.5

Standard Name
DSS Digital Signature Standard
RSA RSA based signature

9.2. Creating a public cipher. A PublicCipher object can be created with a cipher
constructor. The RSA asymmetric cipher is the typical example of public cipher. It is
created by binding a RSA key to it. For security reasons, the key size must be large enough,
typically with a size of at lease 1024 bits.

1 const key (afnix:sec:Key afnix:sec:Key:KRSA 1024)
2 const rsa (afnix:sec:Rsa key)

A block cipher can be created with a key and eventually a reverse flag. Additional
constructors are available to support various padding mode. Such padding mode depends
on the cipher type. For example, the RSA cipher supports the ISO 18033-2 padding mode
with a KDF1 or KDF2 object. Such constructor requires a hasher object as well.

1 # create a 1024 bits rsa key
2 const key (afnix:sec:Key afnix:sec:KRSA 1024)
3 # create a SHA-1 hasher
4 const ash (afnix:sec:Sha1)
5 # create a rsa public cipher
6 const rsa (afnix:sec:Rsa key ash "Demo")
7 # set the padding mode
8 rsa:set-padding-mode afnix:sec:Rsa:PAD-OAEP-K1

9.3. Public cipher padding mode. Like any cipher, a padding mode can be asso-
ciated with the cipher. The set-padding-mode method can be used to set or change the
padding mode. Depending on the padding mode type, additional objects might be needed
at construction.

The default padding mode depends on the cipher type. For RSA, the default padding
mode is set to PKCS 1.5 for compatibility reason.

10. Signature objects

A digital signature is a unique representation, supposedly non forgeable, designed to
authenticate a document, in whatever form it is represented. For example, a signature is
used to sign a certificate which is used during the process of establish a secured connection
over the Internet. A signature can also be used to sign a courrier or keys as it is in the
Openssh protocol. Digital signatures come into several flavors eventually associated with
the signed document. Sometimes, the signature acts as a container and permits to retrieve
the document itself. Whatever the method, the principle remains the same. As of today
technology, there are two standards used to sign document as indicated below.

10.1. Signer and signature objects. The process of generating a signature is done
with the help of a Signer object. A signer object is a generic object, similar in functionality
to the hasher object. The result produced by a signer object is a Signature object which
holds the generated signature.

10. SIGNATURE OBJECTS 97

Standard Key Signer
DSS KDSA Dsa

10.2. Signature key. The process of generating a signature often requires the use of
a key. Such key can be generated with the help of the Key object. The nature of the key
will depend on the target signature. The following table is a resume of the supported keys.

In the case of DSS, a key can be generated automatically, although this process is time
consuming. The default key size is 1024 bits.

1 const key (afnix:sec:Key afnix:sec:Key:KDSA)
2 assert 1024 (key:get-bits)

10.3. Creating a signer. A Signer object is created with a particular signature object
such like DSA. The Dsa object is a signer object that implements the Digital Signature
Algorithm as specified by the Digital Signature Standard (DSS) in FIPS-PUB 186-3 .

1 # create a dsa signer
2 const dsa (afnix:sec:Dsa key)
3 assert true (afnix:sec:dsa-p dsa)

10.4. Creating a signature. A signature is created with the help of the compute
method. The Signature object is similar to the Hasher and operates with string or streams.

1 # create a signature object
2 const sgn (dsa:compute "afnix")
3 assert true (afnix:sec:signature-p sgn)

Once the signature is created, each data can be accessed directly with the associated
component mapper. In the case of DSS, there are two components as show below.

1 # get the DSS S component
2 sgn:get-relatif-component
3 afnix:sec:Signature:DSA-S-COMPONENT
4 # get the DSS R component
5 sgn:get-relatif-component
6 afnix:sec:Signature:DSA-R-COMPONENT

CHAPTER 12

Standard Security Reference

99

100 12. STANDARD SECURITY REFERENCE

1. Object Hasher

The Hasher class is a base class that is used to build a message hash. The hash result
is stored in an array of bytes and can be retrieved byte by byte or as a formatted printable
string. This class does not have a constructor.

1.1. Predicate.

• hasher-p

1.2. Inheritance.

• Nameable

1.3. Methods.

• reset → none (none)
The reset method reset the hasher object with its associated internal states.

• hash-p → Boolean (String)
The hash-p predicate returns true if the string argument is potentially a hash value.
It is not possible, with our current technology, to reverse a hash value to one or
several representations, nor it is possible to assert that such value exists.

• get-byte → Byte (Integer)
The get-byte method returns the hash byte value by index. The argument is the
byte index which must be in the range of the hash result length.

• format → String (none)
The format method return a string representation of the hash value.

• compute → String (Literal—Buffer—InputStream)
The compute method computes the hash value from a string, a buffer or an input
stream. The method returns a string representation of the result hash value. When
the argument is a buffer object or an input stream, the characters are consumed
from the object.

• derive → String (String)
The derive method computes the hash value from an octet string which is converted
before the hash computation. The method returns a string representation of the
result hash value.

• get-hash-length → Integer (none)
The get-hash-length method returns the hasher length in bytes.

• get-result-length → Integer (none)
The get-result-length method returns the hasher result length in bytes. The result
length is less or equal to the hasher length and is set at construction.

2. OBJECT MD2 101

2. Object Md2

The Md2 class is a hashing class that implements the MD-2 algorithm.

2.1. Predicate.

• md2-p

2.2. Inheritance.

• Hasher

2.3. Constructors.

• Md2 → (none)
The Md2 constructor creates a default hashing object that implements the MD-2
algorithm.

• Md2 → (Integer)
The Md2 constructor creates a MD-2 hashing object with a result length. The
argument is the hasher result length that must be less or equal to the hasher length.

102 12. STANDARD SECURITY REFERENCE

3. Object Md4

The Md4 class is a hashing class that implements the MD-4 algorithm.

3.1. Predicate.

• md4-p

3.2. Inheritance.

• Hasher

3.3. Constructors.

• Md4 → (none)
The Md4 constructor creates a default hashing object that implements the MD-4
algorithm.

• Md4 → (Integer)
The Md4 constructor creates a MD-4 hashing object with a result length. The
argument is the hasher result length that must be less or equal to the hasher length.

4. OBJECT MD5 103

4. Object Md5

The Md5 class is a hashing class that implements the MD-5 algorithm.

4.1. Predicate.

• md5-p

4.2. Inheritance.

• Hasher

4.3. Constructors.

• Md5 → (none)
The Md5 constructor creates a default hashing object that implements the MD-5
algorithm.

• Md5 → (Integer)
The Md5 constructor creates a MD-5 hashing object with a result length. The
argument is the hasher result length that must be less or equal to the hasher length.

104 12. STANDARD SECURITY REFERENCE

5. Object Sha1

The Sha1 class is a hashing class that implements the SHA-1 algorithm.

5.1. Predicate.

• sha1-p

5.2. Inheritance.

• Hasher

5.3. Constructors.

• Sha1 → (none)
The Sha1 constructor creates a default hashing object that implements the SHA-1
algorithm.

• Sha1 → (Integer)
The Sha1 constructor creates a SHA-1 hashing object with a result length. The
argument is the hasher result length that must be less or equal to the hasher length.

6. OBJECT SHA224 105

6. Object Sha224

The Sha224 class is a hashing class that implements the SHA-224 algorithm.

6.1. Predicate.

• sha224-p

6.2. Inheritance.

• Hasher

6.3. Constructors.

• Sha224 → (none)
The Sha224 constructor creates a default hashing object that implements the
SHA-224 algorithm.

• Sha224 → (Integer)
The Sha224 constructor creates a SHA-224 hashing object with a result length.
The argument is the hasher result length that must be less or equal to the hasher
length.

106 12. STANDARD SECURITY REFERENCE

7. Object Sha256

The Sha256 class is a hashing class that implements the SHA-256 algorithm.

7.1. Predicate.

• sha256-p

7.2. Inheritance.

• Hasher

7.3. Constructors.

• Sha256 → (none)
The Sha256 constructor creates a default hashing object that implements the
SHA-256 algorithm.

• Sha256 → (Integer)
The Sha256 constructor creates a SHA-256 hashing object with a result length.
The argument is the hasher result length that must be less or equal to the hasher
length.

8. OBJECT SHA384 107

8. Object Sha384

The Sha384 class is a hashing class that implements the SHA-384 algorithm.

8.1. Predicate.

• sha384-p

8.2. Inheritance.

• Hasher

8.3. Constructors.

• Sha384 → (none)
The Sha384 constructor creates a default hashing object that implements the
SHA-384 algorithm.

• Sha384 → (Integer)
The Sha384 constructor creates a SHA-384 hashing object with a result length.
The argument is the hasher result length that must be less or equal to the hasher
length.

108 12. STANDARD SECURITY REFERENCE

9. Object Sha512

The Sha512 class is a hashing class that implements the SHA-512 algorithm.

9.1. Predicate.

• sha512-p

9.2. Inheritance.

• Hasher

9.3. Constructors.

• Sha512 → (none)
The Sha512 constructor creates a default hashing object that implements the
SHA-512 algorithm.

• Sha512 → (Integer)
The Sha512 constructor creates a SHA-512 hashing object with a result length.
The argument is the hasher result length that must be less or equal to the hasher
length.

10. OBJECT KEY 109

10. Object Key

The Key class is an original class used to store a particular key or to generate one. A key
is designed to operate with a variety of cipher that can be either symmetric or asymmetric.
In the symmetric case, the key is generally an array of bytes. Asymmetric key are generally
stored in the form of number list that can be computed or loaded by value. By default, a
random 128 bit symmetric key is created.

10.1. Predicate.

• key-p

10.2. Inheritance.

• Object

10.3. Constructors.

• Key → (none)
The Key constructor creates a default cipher key. The key is generated with
random bytes and is 128 bits long.

• Key → (String)
The Key constructor creates a symmetric key from an octet string. The octet string
argument determines the size of the key. The octet string argument is compatible
with the string obtained from the format method.

• Key → (Item)
The Key constructor creates a key by type. If the key type is KSYM , a symmetric
128 bytes random key is generated. If the key type is KRSA , a 1024 bits RSA
random key is generated.

• Key → (Item Integer—String—Vector)
The Key constructor creates a key by type. The first argument is the key type to
generate. The second argument is either the key size, the key octet string or the
key byte values. In the first form, an integer argument specifies the key size in
bytes or bits depending on the key nature. In the second form, a string is used as
octet string to represent the key. In the third form, a vector of byte values can be
used to load the key.

10.4. Constants.

• KSYM → ()
The KSYM constant indicates that the key is a symmetric key.

• KRSA → ()
The KRSA constant indicates that the key is a asymmetric RSA key.

• KMAC → ()
The KMAC constant indicates that the key is a message authentication (MAC)
key.

• RSA-MODULUS → ()
The RSA-MODULUS constant corresponds to the RSA modulus value.

• RSA-PUBLIC-EXPONENT → ()
The RSA-PUBLIC-EXPONENT constant corresponds to the RSA public expo-
nent value which is generally 65537.

• RSA-SECRET-EXPONENT → ()
The RSA-SECRET-EXPONENT constant corresponds to the RSA secret expo-
nent value.

110 12. STANDARD SECURITY REFERENCE

10.5. Methods.

• get-byte → Byte (Integer)
The get-byte method returns a key byte value by index. The index must be in the
key range or an exception is raised. This method is primarily used with symmetric
key.

• get-type → Item (none)
The get-type method returns the key type in the form of an item object.

• get-bits → Integer (none)
The get-bits method returns the key size in bits.

• get-size → Integer (none)
The get-size method returns the key size in bytes.

• format → String (none—Item)
The format method returns a string representation of the key. In the first form,
without argument, the key is returned as an octet string if possible. In the second
form, the key value is returned as an octet string based on the key element to
access.

• get-relatif-key → Relatif (Item)
The get-relatif-key method returns a relatif representation of a key element. This
method is well suited for asymmetric key. The key value is returned as a relatif
based on the key element to access.

11. OBJECT KDF 111

11. Object Kdf

The Kdf class is an abstract class used to model key derivation function. The class
provides only a byte buffer which can be accessed by index. In the key derivation functions
land, there are numerous standards, such like PKCS 2.1, IEEE P1363-2000, ISO/IEC 18033-
2. All of these standards have sometimes conflicting definitions.

11.1. Predicate.

• kdf-p

11.2. Inheritance.

• Nameable

11.3. Methods.

• reset → none (none)
The reset method reset the internal state of the kdf object.

• get-size → Integer (none)
The get-size method returns the kdf size in bytes.

• get-byte → Byte (Integer)
The get-byte method returns a kdf byte value by index. The index must be in the
key range or an exception is raised.

• format → String (none)
The format method returns a string representation of the derived key.

• derive → String (String)
The derive method returns a string representation of a derived key computed from
the octet string argument.

• compute → String (String)
The compute method returns a string representation of a derived key computed
from the string argument.

112 12. STANDARD SECURITY REFERENCE

12. Object Hkdf

The Hkdf class is an abstract class used to model key derivation function based on hash
function. The class maintains a hasher object that is used to derive the key from an octet
string.

12.1. Predicate.

• hashed-kdf-p

12.2. Inheritance.

• Kdf

12.3. Methods.

• get-hasher → none (none)
The get-hasher method returns the hasher object associated with the key derivation
function object. object.

13. OBJECT KDF1 113

13. Object Kdf1

The Kdf1 class is a hashed key derivation function class that implements the KDF1
specification as defined by ISO/IEC 18033-2. The class is strictly equivalent to the mask
generation function (MGF1) defined in PKCS 2.1. On the other hand, this implementation
does not conform to the KDF1 specification of IEEE 1363-2000 which is somehow rather
bizarre. The class operates in theory with any type of hasher object as long as the octet
string is not too long.

13.1. Predicate.

• kdf1-p

13.2. Inheritance.

• Hkdf

13.3. Constructors.

• Kdf1 → (Hasher Integer)
The Kdf1 constructor creates a KDF1 key derivation function object. The first
argument is the hasher object to bind and the second argument is the kdf size.

114 12. STANDARD SECURITY REFERENCE

14. Object Kdf2

The Kdf2 class is a hashed key derivation function class that implements the KDF2
specification as defined by ISO/IEC 18033-2. The class is strictly equivalent to the key
function derivation (KDF1) except that the internal counter runs from 1 to k instead of 0 to
k-1. The class operates in theory with any type of hasher object as long as the octet string
is not too long.

14.1. Predicate.

• kdf2-p

14.2. Inheritance.

• Hkdf

14.3. Constructors.

• Kdf2 → (Hasher Integer)
The Kdf2 constructor creates a KDF2 key derivation function object. The first
argument is the hasher object to bind and the second argument is the kdf size.

15. OBJECT CIPHER 115

15. Object Cipher

The Cipher class is a base class that is used to implement a cipher. A cipher is used to
encrypt or decrypt a message. There are basically two types of ciphers, namely symmetric
cipher and asymmetric cipher. For the base class operation, only the cipher name and key
is needed. A reverse flag controls whether or not an encryption operation must be reversed.
A reset method can also be used to reset the internal cipher state.

15.1. Predicate.

• cipher-p

15.2. Inheritance.

• Nameable

15.3. Methods.

• reset → none (none)
The reset method reset the cipher internal state.

• stream → Integer (OutputStream InputStream)
The stream method process an input stream and write into an output stream.
The method returns the number of character processed. The first argument is the
output stream used to write the coded characters. The second argument is the
input stream used to read the characters.

• set-key → none (Key)
The set-key method sets the cipher key. The first argument is the key to set.

• get-key → Key (none)
The get-key method returns the cipher key.

• set-reverse → none (Boolean)
The set-reverse method sets the cipher reverse flag. The first argument is the flag
to set. If the flag is true, the cipher operates in reverse mode. If the flag is false,
the cipher operates in direct mode.

• get-reverse → Boolean (none)
The get-reverse method returns the cipher reverse flag. If the flag is true, the
cipher operates in reverse mode. If the flag is false, the cipher operates in direct
mode.

116 12. STANDARD SECURITY REFERENCE

16. Object BlockCipher

The BlockCipher class is an abstract class that is used to implement a symmetric block
cipher. By default the cipher operates in encryption mode. When the reverse flag is set,
the decryption mode is activated. For a block cipher, a block size controls the cipher
operations. The class also defines the constants that control the block padding with the
associated methods.

16.1. Predicate.

• block-cipher-p

16.2. Inheritance.

• Cipher

16.3. Constants.

• PAD-NONE → ()
The PAD-NONE constant indicates that the block should not be padded.

• PAD-BIT-MODE → ()
The PAD-BIT constant indicates that the block should be padded in bit mode.

• PAD-ANSI-X923 → ()
The PAD-ANSI-X923 constant indicates that the block should be padded accord-
ing to ANSI X 923 standard.

• PAD-NIST-800 → ()
The PAD-NIST-800 constant indicates that the block should be padded according
to NIST 800-38A recommendations. This is the default mode.

16.4. Methods.

• get-block-size → Integer (none)
The get-block-size method returns the cipher block size.

• set-padding-mode → none (Item)
The set-padding-mode method sets the cipher padding mode.

• get-padding-mode → Item (none)
The get-padding-mode method returns the cipher padding mode.

17. OBJECT INPUTCIPHER 117

17. Object InputCipher

The InputCipher class is an stream interface that can stream out an input stream from
a cipher. In other word, an input stream is read and block are encoded as long as the
input stream read characters. If the cipher is nil, the input cipher simply read the input
stream and is therefore transparent. The class acts like an input stream, read the character
from the bounded input stream and encode or decode them from the bounded cipher. The
InputCipher defines several modes of operations. In electronic codebook mode or ECB, the
character are encoded in a block basis. In cipher block chaining mode, the block are encoded
by doing an XOR operation with the previous block. Other modes such like cipher feedback
mode and output feedback mode are also defined.

17.1. Predicate.

• input-cipher-p

17.2. Inheritance.

• Input

17.3. Constructors.

• InputCipher → (Cipher)
The InputCipher constructor creates an input cipher with a cipher object. The
first argument is the cipher to used for processing.

• InputCipher → (Cipher Input)
The InputCipher constructor creates an input cipher with a cipher object and an
input stream. The first argument is the cipher to used for processing. The second
argument is the input stream object used for the character reading.

• InputCipher → (Cipher InputStream Item)
The InputCipher constructor creates an input cipher with a cipher object, an input
stream and a mode. The first argument is the cipher to used for processing. The
second argument is the input stream object used for the character reading. The
third argument is the input cipher mode which can be either ECB, CBC, CFB or
OFB.

17.4. Constants.

• ECB → ()
The ECB constant indicates that the input cipher is to operate in electronic code-
book mode. This mode is the default mode.

• CBC → ()
The CBC constant indicates that the input cipher is to operate in cipher chaining
block mode.

• CFB → ()
The CFB constant indicates that the input cipher is to operate in cipher feedback
block mode.

• OFB → ()
The OFB constant indicates that the input cipher is to operate in output feedback
block mode.

17.5. Methods.

• reset → none (none)
The reset method reset the input cipher object.

• get-mode → Item (none)
The get-mode method returns the input cipher operating mode.

118 12. STANDARD SECURITY REFERENCE

• set-iv → none (String—Buffer)
The set-iv method sets the input cipher initial vector. In the first form, the initial
vector is set from an octet string. In the second form, the initial vector is set from
a buffer object.

• get-iv → String (none)
The get-iv method returns the input cipher initial vector as an octet string.

• set-is → none (InputStream)
The set-is method sets the input cipher input stream. This method can be used
to chain multiple input streams in a unique coding session.

18. OBJECT AES 119

18. Object Aes

The Aes class is a block cipher class that implements the advanced encryption standard
(AES), originally known as Rijndael. This is an original implementation that conforms to
the standard FIPS PUB 197. It should be noted that the AES standard, unlike Rijndael,
defines a fixed block size of 16 bytes (4 words) and 3 keys sizes (128, 192, 256).

18.1. Predicate.

• aes-p

18.2. Inheritance.

• BlockCipher

18.3. Constructors.

• Aes → (Key)
The Aes constructor creates a direct cipher with a key. The first argument is the
key used by the cipher.

• Aes → (Key Boolean)
The Aes constructor creates a cipher with a key and a reverse flag. The first
argument is the key used by the cipher. The second argument is the reverse flag.

120 12. STANDARD SECURITY REFERENCE

19. Object PublicCipher

The PublicCipher class is an abstract class that is used to implement an asymmetric
cipher. An asymmetric cipher or public key cipher is designed to operate with a public key
and a secret key. Depending on the use model, the public key might be used to crypt the
data, and the secret key to decrypt. The basic assumption around a public cipher is that
the secret key cannot be derived from the public key.

19.1. Predicate.

• public-cipher-p

19.2. Inheritance.

• Cipher

19.3. Methods.

• get-message-size → Integer (none)
The get-message-size method returns the cipher message size.

• get-crypted-size → Integer (none)
The get-crypted-size method returns the cipher crypted block size.

20. OBJECT RSA 121

20. Object Rsa

The Rsa class is a public cipher class that implements the RSA algorithm as described by
PKCS 2.1, RFC 2437 and ISO 18033-2. The class implements also some padding mechanism
described in PKCS 1.5, 2.1 and ISO 18033-2. The RSA algorithm is a public cryptographic
cipher based on a secret and public keys. The class operates in crypting mode by default and
uses the public key to do the encryption while the secret key is used in reverse (decryption)
mode. By default, the PKCS 1.5 type 2 padding is used. The ISO RSA-REM1 padding
with a key derivation function (KDF1) is equivalent to PKCS 2.1 padding with the mask
generation function (MGF1). The ISO RSA-REM1 padding with KDF2 is not described in
the PKCS 2.1.

20.1. Predicate.

• rsa-p

20.2. Inheritance.

• PublicCipher

20.3. Constructors.

• Rsa → (none)
The Rsa constructor creates a default RSA public cipher by binding a 1024 bits
random key.

• Rsa → (Key)
The Rsa constructor creates a RSA public cipher by binding the key argument.

• Rsa → (Key Boolean)
The Rsa constructor creates a RSA public cipher by binding the key argument
and the reverse flag. The first argument is the key to bind. The second argument
is the reverse flag to set.

• Rsa → (Key Hasher String)
The Rsa constructor creates a RSA public cipher by binding the key argument and
OAEP padding objects. The first argument is the key to bind. The second argu-
ment is hasher object to use with the OAEP padding mode. The third argument
is an optional label to be used by the KDF object.

20.4. Constants.

• PAD-PKCS-11 → ()
The PAD-PKCS-11 constant indicates that the PKCS 1.5 type 1 block should be
used to pad the message.

• PAD-PKCS-12 → ()
The PAD-PKCS-12 constant indicates that the PKCS 1.5 type 3 block should be
used to pad the message.

• PAD-OAEP-K1 → ()
The PAD-OAEP-K1 constant indicates that the ISO/IEC 18033-2 OAEP with
KDF1 should be used to pad the message.

• PAD-OAEP-K2 → ()
The PAD-OAEP-K2 constant indicates that the ISO/IEC 18033-2 OAEP with
KDF2 should be used to pad the message.

20.5. Methods.

• get-hasher → Hasher (none)
The get-hasher method returns the hasher object used by the OAEP padding
mode.

122 12. STANDARD SECURITY REFERENCE

• set-hasher → none (Hasher)
The set-hasher method sets the hasher object used by the OAEP padding mode.

• get-padding-mode → Item (none)
The get-padding-mode method returns the cipher padding mode.

• set-padding-mode → none (Item)
The set-padding-mode method sets the cipher padding mode.

• get-padding-label → String (none)
The get-padding-label method returns the cipher padding label.

• set-padding-label → none (String)
The set-padding-mode method sets the cipher padding label.

• get-padding-seed → String (none)
The get-padding-seed method returns the cipher padding seed.

• set-padding-seed → none (String)
The set-padding-seed method sets the cipher padding seed.

• pkcs-primitive → Relatif (Integer—Relatif)
The pkcs-primitive method compute a relatif value from a relatif argument by
either crypting or decrypting the argument. seed.

21. OBJECT SIGNER 123

21. Object Signer

The Signer class is a base class that is used to build a message signature. The signature
result is stored in a special signature object which is algorithm dependent.

21.1. Predicate.

• signer-p

21.2. Inheritance.

• Nameable

21.3. Methods.

• reset → none (none)
The reset method reset the signer object with its associated internal states.

• compute → Signature (Literal—Buffer—InputStream)
The compute method computes the signature from a string, a buffer or an input
stream. The method returns a signature object. When the argument is a buffer
object or an input stream, the characters are consumed from the object.

• derive → Signature (String)
The derive method computes the signature from an octet string which is converted
before the signature computation. The method returns a signature object.

124 12. STANDARD SECURITY REFERENCE

22. Object Signature

The Signature class is a container class designed to store a message signature. The
signature object is produced by a signing process, implemented in the form of a digital
signature algorithm such like RSA or DSA.

22.1. Predicate.

• signature-p

22.2. Inheritance.

• Object

22.3. Constructors.

• Signature → (none)
The Signature constructor creates an empty signature.

22.4. Constants.

• NIL → ()
The NIL constant indicates that the signature is a null signature.

• DSA → ()
The DSA constant indicates that the signature is conforming to DSS.

• DSA-S-COMPONENT → ()
The DSA-S-COMPONENT constant corresponds to the DSA S component value.

• DSA-R-COMPONENT → ()
The DSA-R-COMPONENT constant corresponds to the DSA R component value.

22.5. Methods.

• reset → none (none)
The reset method reset the signature object to a null signature.

• format → String (Item)
The format method returns a string representation of the signature component.
The signature component is returned as an octet string based on the signature
component to access.

• get-relatif-component → Relatif (Item)
The get-relatif-component method returns a relatif representation of a signature
component.

23. OBJECT DSA 125

23. Object Dsa

The Dsa class is an original implementation of the Digital Signature Standard (DSS)
as published in FIPS PUB 186-3. This class implements the Digital Signature Algorithm
(DSA) with an approved key length of 1024, 2048 and 3072 bits with a 160, 224 and 256
bits hash function which is part of the SHA family.

23.1. Predicate.

• dsa-p

23.2. Inheritance.

• Signer

23.3. Constructors.

• Dsa → (none)
The Dsa constructor creates a signer object with a default DSA key.

• Dsa → (Key)
The Dsa constructor creates a signer object with a DSA key as its argument.

• Dsa → (Key Relatif)
The Dsa constructor creates a signer object with a DSA key as its first argument
and a fixed k argument as specified by DSS.

CHAPTER 13

Standard Input/Output Module

The Standard Input/Output module is an orginal implementation that provides objects
for i/o operations. Although input and output files are the standard objects that one
might expect, the module facilities for directory access, path manipulation and i/o event
management. At the heart of this module is the concept of stream associated with the
transcoding object which enable the passage between one coding system to another. It is
also this module which provides the stream selector object.

1. Input and output streams

The afnix-sio module is based on facilities provided by two base classes, namely, the
InputStream stream and the OutputStream stream. Both classes have associated predicates
with the name input-stream-p and output-stream-p . The base class associated is the Stream
class those sole purpose is to define the stream coding mode.

1.1. Stream base class. The Stream class is the base class for the InputStream and
OutputStream classes. The Stream class is used to define the stream coding mode that
affects how characters are read or written. When a stream operates in byte mode , each
character is assumed to be encoded in one byte. In that case, the input stream methods read
and getu are equivalent and no transformation is performed when writing characters. This
behavior is the default stream behavior. For certain stream, like terminal, this behavior is
changed depending on the current localization settings. For instance, if the current locale
is operating with an UTF-8 codeset, the Terminal stream coding mode is automatically
adjusted to reflect this situation. Since the US-ASCII codeset is predominant and the
default steam coding mode is the byte mode, there should be no conflict during the read
and write operations.

1.2. Stream transcoding. The Stream class provides the support for the transcod-
ing of different codesets. All ISO-8859 codesets are supported. Since the engine operates
internally with Unicode characters, the transcoding operation takes care of changing a char-
acter in one particular codeset into its equivalent Unicode representation. This operation is
done for an input stream that operates in byte mode. For an output stream, the opposite
operation is done. An internal Unicode characters representation is therefore mapped into
a particular codeset. Note that only the codeset characters can be mapped.

The set-encoding-mode can be used to set the stream encoding codeset. The method
operates either by enumeration or string. The get-encoding-mode returns the stream en-
coding mode. There are some time good reasons to force a stream encoding mode. For
example, a file encoded in UTF-8 that is read will require this call since the default stream
mode is to work in byte mode. It should be noted that there is a difference between the
enumeration and the string encoding mode. The enumeration mode defines whether the
stream operates in byte or UTF-8 mode. When the stream operates in byte mode, it is
also necessary to define the transcoding mode with the set-transcoding-mode method. For
simplicity, the string version of the set-encoding-mode takes care of setting both the stream

127

128 13. STANDARD INPUT/OUTPUT MODULE

Codeset Description
DEFAULT Default codeset, i.e US-ASCII
ISO-01 ISO-8859-1 codeset
ISO-02 ISO-8859-2 codeset
ISO-03 ISO-8859-3 codeset
ISO-04 ISO-8859-4 codeset
ISO-05 ISO-8859-5 codeset
ISO-06 ISO-8859-6 codeset
ISO-07 ISO-8859-7 codeset
ISO-08 ISO-8859-8 codeset
ISO-09 ISO-8859-9 codeset
ISO-10 ISO-8859-10 codeset
ISO-11 ISO-8859-11 codeset
ISO-13 ISO-8859-13 codeset
ISO-14 ISO-8859-14 codeset
ISO-15 ISO-8859-15 codeset
ISO-16 ISO-8859-16 codeset
UTF-08 Unicode UTF-8 codeset

mode and the transcoding mode. It is also worth to note that internally, the Stream class
is derived from the Transcoder class.

1.3. Input stream. The InputStream base class has several method for reading and
testing for byte availability. Moreover, the class provides a push-back buffer. Reading bytes
is in the form of three methods. The read method without argument returns the next
available byte or the end-of-stream eos . With an integer argument, the read method
returns a Buffer with at most the number of requested bytes. The readln method returns
the next available line. When it is necessary to read characters instead of bytes, the getu is
more appropriate since it returns an Unicode character.

1.4. Output stream. The OutputStream base class provides the base methods to
write to an output stream. The write method takes literal objects which are automatically
converted to string representation and then written to the output stream. Note that for
the case of a Buffer object, it is the buffer itself that take a stream argument and not the
opposite.

1.5. The valid-p predicate. The input stream provides a general mechanism to test
and read for bytes. The base method is the valid-p predicate that returns true if a byte
can be read from the stream. It is important to understand its behavior which depends
on the stream type. Without argument, the valid-p predicate checks for an available byte
from the input stream. This predicate will block if no byte is available. On the other end,
for a bounded stream like an input file, the method will not block at the end of file. With
one integer argument, the valid-p predicate will timeout after the specified time specified in
milliseconds. This second behavior is particularly useful with unbound stream like socket
stream.

1.6. The eos-p predicate. The eos-p predicate does not take argument. The predi-
cate behaves like not (valid-p 0) . However, there are more subtle behaviors. For an input
file, the predicate will return true if and only if a byte cannot be read. If a byte has been
pushed-back and the end-of-stream marker is reached, the method will return false. For
an input terminal, the method returns true if the user and entered the end-of-stream byte.
Once again, the method reacts to the contents of the push-back buffer. For certain input

2. FILE STREAM 129

stream, like a tcp socket, the method will return true when no byte can be read, that is
here, the connection has been closed. For an udp socket, the method will return true when
all datagram bytes have be read.

1.7. The read method. The read method is sometimes disturbing. Nevertheless, the
method is a blocking one and will return a byte when completed. The noticeable exception
is the returned byte when an end-of-stream marker has been reached. The method returns
the ctrl-d byte. Since a binary file might contains valid byte like ctrl-d it is necessary to
use the valid-p or eos-p predicate to check for a file reading completion. This remark apply
also to bounded streams like a tcp socket. For some type of streams like a udp socket, the
method will block when all datagram bytes have been consumed and no more datagram
has arrived. With this kind of stream, there is no end-of-stream condition and therefore
care should be taken to properly assert the stream content. This last remark is especially
true for the readln method. The method will return when the end-of-stream marker is
reached, even if a newline byte has not been read. With an udp socket, such behavior will
not happen.

1.8. Buffer read mode. The read method with an integer argument, returns a buffer
with at least the number of bytes specified as an argument. This method is particularly
useful when the contents has a precise size. The method returns a Buffer object which can
later be used to read, or transform bytes. Multi-byte conversion to number should use such
approach. The read method does not necessarily returns the number of requested bytes.
Once the buffer is returned, the length method can be used to check the buffer size. Note
also the existence of the to-string method which returns a string representation of the buffer.

1 # try to read 256 bytes
2 const buf (is:read 256)
3 # get the buffer size
4 println (buf:length)
5 # get a string representation
6 println (buf:to-string)

2. File stream

The afnix-sio module provides two classes for file access. The InputFile class open a
file for input. The OutputFile class opens a file for output. The InputFile class is derived
from the InputStream base class. The OutputFile class is derived from the OutputStream
class. By default an output file is created if it does not exist. If the file already exist, the
file is truncated to 0. Another constructor for the output file gives more control about this
behavior. It takes two boolean flags that defines the truncate and append mode.

1 # load the module
2 interp:library "afnix-sio"
3 # create an input file by name
4 const if (afnix:sio:InputFile "orig.txt")
5 # create an output file by name
6 const of (afnix:sio:OutputFile "copy.txt")

2.1. Stream information. Both InputFile and OutputFile supports the get-name
method which returns the file name.

1 println (if:get-name)
2 println (of:get-name)

Predicates are also available for these classes. The input-file-p returns true for an input
file object.The output-file-p returns true for an output file object.

130 13. STANDARD INPUT/OUTPUT MODULE

1 afnix:sio:input-stream-p if
2 afnix:sio:output-stream-p of
3 afnix:sio:input-file-p if
4 afnix:sio:output-file-p of

2.2. Reading and writing. The read method reads a byte on an input stream. The
write method writes one or more literal arguments on the output stream. The writeln
method writes one or more literal arguments followed by a newline byte on the output
stream. The newline method write a newline byte on the output stream. The eos-p predicate
returns true for an input stream, if the stream is at the end. The valid-p predicate returns
true if an input stream is in a valid state. With these methods, copying a file is a simple
operation.

1 # load the module and open the files
2 interp:library "afnix-sio"
3 const if (afnix:sio:InputFile "orig.txt")
4 const of (afnix:sio:OutputFile "copy.txt")
5 # loop in the input file and write
6 while (if:valid-p) (of:write (if:read))

The use of the readln method can be more effective. The example below is a simple cat
program which take the file name an argument.

1 # cat a file on the output terminal
2 # usage: axi 0601.als file
3 # get the io module
4 interp:library "afnix-sio"
5 # cat a file
6 const cat (name) {
7 const f (afnix:sio:InputFile name)
8 while (f:valid-p) (println (f:readln))
9 f:close

10 }
11 # get the file
12 if (== 0 (interp:argv:length)) {
13 errorln "usage: axi 0601.als file"
14 } {
15 cat (interp:argv:get 0)
16 }

3. Multiplexing

I/O multiplexing is the ability to manipulate several streams at the same time and
process one at a time. Although the use of threads reduce the needs for i/o multiplexing,
there is still situations where they are needed. In other words, I/O multiplexing is identical
to the valid-p predicate, except that it works with several stream objects.

3.1. Selector object. I/O multiplexing is accomplished with the Selector class. The
constructor takes 0 or several stream arguments. The class manages automatically to dif-
ferentiate between InputStream stream and OutputStream streams. Once the class is con-
structed, it is possible to get the first stream ready for reading or writing or all of them.
We assume in the following example that is and os are respectively an input and an output
stream.

1 # create a selector
2 const slt (afnix:sio:Selector is)
3 # at this stage the selector has one stream
4 # the add method can add more streams
5 slt:add os

4. TERMINAL STREAMS 131

The add method adds a new stream to the selector. The stream must be either an
InputStream and OutputStream stream or an exception is raised. If the stream is both an
input and an output stream, the preference is given to the input stream. If this preference
is not acceptable, the input-add or the output-add methods might be preferable. The input-
length method returns the number of input streams in this selector. The output-length
method returns the number of output streams in this selector. The input-get method returns
the selector input stream by index. The output-get method returns the selector output
stream by index.

3.2. Waiting for i/o event. The wait and wait-all methods can be used to detect a
status change in the selector. Without argument both methods will block indefinitely until
one stream change. With one integer argument, both method blocks until one stream change
or the integer argument timeout expires. The timeout is expressed in milliseconds. Note
that 0 indicates an immediate return. The wait method returns the first stream which is
ready either for reading or writing depending whether it is an input or output stream. The
wait-all method returns a vector with all streams that have changed their status. The wait
method returns nil if the no stream have changed. Similarly, the wait-all method returns
an empty vector.

1 # wait for a status change
2 const is (slt:wait)
3 # is is ready for reading - make sure it is an input one
4 if (afnix:sio:input-stream-p is) (is:read)

A call to the wait method will always returns the first input stream.

3.3. Marking mode. When used with several input streams in a multi-threaded con-
text, the selector behavior can becomes quite complicated. For this reason, the selector can
be configured to operate in marking mode. In such mode, the selector can be marked as
ready by a thread independently of the bounded streams. This is a useful mechanism which
can be used to cancel a select loop. The mark method is designed to mark the selector while
the marked-p predicate returns true if the stream has been marked.

4. Terminal streams

Terminal streams are another kind of streams available in the standard i/o module. The
InputTerm , OutputTerm and ErrorTerm classes are low level classes used to read or write
from or to the standard streams. The basic methods to read or write are the same as the
file streams. Reading from the input terminal is not a good idea, since the class does not
provide any formatting capability. One may prefer to use the Terminal class. The use of
the output terminal or error terminal streams is convenient when the interpreter standard
streams have been changed but one still need to print to the terminal.

4.1. Terminal class. The Terminal class combines an input stream and an output
stream with some line editing capabilities. When the class is created, the constructed
attempts to detect if the input and output streams are bounded to a terminal (i.e tty). If
the line editing capabilities can be loaded (i.e non canonical mode), the terminal is initialized
for line editing. Arrows, backspace, delete and other control sequences are available when
using the read-line method. The standard methods like read or readln do not use the line
editing features. When using a terminal, the prompt can be set to whatever the user wishes
with the methods set-primary-prompt or set-secondary-prompt . A secondary prompt is
displayed when the read-line method is called with the boolean argument false.

1 const term (Terminal)
2 term:set-primary-prompt "demo:"
3 const line (term:read-line)
4 errorln line

132 13. STANDARD INPUT/OUTPUT MODULE

4.2. Using the error terminal. The ErrorTerm class is the most frequently used
class for printing data on the standard error stream. The reserved keywords error or errorln
are available to write on the interpreter error stream. If the interpreter error stream has
been changed, the use of the ErrorTerm will provide the facility required to print directly
on the terminal. The cat program can be rewritten to do exactly this.

1 # cat a file on the error terminal
2 # get the io module
3 interp:library "afnix-sio"
4 # cat a file
5 const cat (name es) {
6 const f (afnix:sio:InputFile name)
7 while (f:valid-p) (es:writeln (f:readln))
8 f:close
9 }

5. Directory

The Directory class provides a facility to manipulate directories. A directory object
is created either by name or without argument by considering the current working direc-
tory. Once the directory object is created, it is possible to retrieve its contents, create new
directory or remove empty one.

5.1. Reading a directory. A Directory object is created either by name or without
argument. With no argument, the current directory is opened. When the current directory
is opened, its full name is computed internally and can be retrieved with the get-name
method.

1 # print the current directory
2 const pwd (afnix:sio:Directory)
3 println (pwd:get-name)

Once the directory object is opened, it is possible to list its contents. The get-list
method returns the full contents of the directory object. The get-files method returns a
list of files in this directory. The get-subdirs method returns a list of sub directories in this
directory.

1 # print a list of files
2 const pwd (afnix:sio:Directory)
3 const lsf (d:get-files)
4 for (name) (lsf) (println name)

5.2. Creating and removing directories. The mkdir and rmdir methods can be
used to create or remove a directory. Both methods take a string argument and construct a
full path name from the directory name and the argument. This approach has the advantage
of being file system independent. If the directory already exists, themkdir methods succeeds.
The rmdir method requires the directory to be empty.

1 const tmp (afnix:sio:Directory (
2 afnix:sio:absolute-path "tmp"))
3 const exp (tmp:mkdir "examples")
4 const lsf (exp:get-files)
5 println (lsf:length)
6 tmp:rmdir "examples"

The function absolute-path constructs an absolute path name from the argument list.
If relative path needs to be constructed, the function relative-path might be used instead.

7. PATH NAME 133

6. Logtee

The Logtee class is a message logger facility associated with an output stream. When
a message is added to the logger object, the message is also sent to the output stream, de-
pending on the controlling flags. The name ”logtee” comes from the contraction of ”logger”
and ”tee”. One particularity of the class is that without a stream, the class behaves like a
regular logger.

6.1. Creating a logger. The Logtee default constructor creates a standard logger
object without an output stream. The instance can also be created by size or with an
output stream or both. A third method can also attach an information string.

1 # create a logger with the interpreter stream
2 const log (Logtee (interp:get-output-stream))
3 assert true (logger-p log)

6.2. Adding messages. The process of adding messages is similar to the regular log-
ger. The only difference is that the message is placed on the output stream if a control flag
is set and the message level is less or equal the report level. In the other word, the control
flag controls the message display – the tee operation – while the report level filters some of
the messages.

1 log:add 2 "a level 2 message"

The set-tee method sets the control flag. The set-report-level method sets the report
level. Note that the set-report-level and its associated get-report-level method is part of the
base Logger class.

7. Path name

The Pathname class is a base class designed to ease the manipulation of system path.
It is particularly useful when it come to manipulate directory component.

7.1. Creating a path name. A path name is created either by file name or by file
and directory name. In the first case, only the file name is used. In the second case, the full
path name is characterized.

1 # create a new path name
2 const path (afnix:sio:Pathname "axi")

7.2. Adding a directory path. The best way to add a directory path is to use the
absolute-path or the relative-path functions.

1 # adding a directory path
2 const name (afnix:sio:absolute-path "usr" "bin")
3 path:set-directory-name name

7.3. Getting the path information. The path information can be obtained individ-
ually or globally. The get-file-name and get-directory-name methods return respectively the
file and directory name. The get-root method returns the root component of the directory
name. The get-full method returns the full path name.

CHAPTER 14

Standard Input/Output Reference

135

136 14. STANDARD INPUT/OUTPUT REFERENCE

1. Object Transcoder

The Transcoder class is a codeset transcoder class. The class is responsible to map a
byte character in a given codeset into its associated Unicode character. It should be noted
that not all characters can be transcoded.

1.1. Predicate.

• transcoder-p

1.2. Inheritance.

• Object

1.3. Constants.

• DEFAULT → ()
The DEFAULT constant is used by the set-transcoding-mode method to specify
the class transcoding mode. In default mode, each character is not transcoded.
This mode is the identity mode.

• I8859-01 → ()
The I8859-01 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-6 codeset.

• I8859-02 → ()
The I8859-02 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-2 codeset.

• I8859-03 → ()
The I8859-03 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-3 codeset.

• I8859-04 → ()
The I8859-04 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-4 codeset.

• I8859-05 → ()
The I8859-05 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-5 codeset.

• I8859-06 → ()
The I8859-06 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-6 codeset.

• I8859-07 → ()
The I8859-07 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-7 codeset.

• I8859-08 → ()
The I8859-08 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-8 codeset.

• I8859-09 → ()
The I8859-09 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-9 codeset.

• I8859-10 → ()
The I8859-10 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-10 codeset.

• I8859-11 → ()
The I8859-11 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-11 codeset.

1. OBJECT TRANSCODER 137

• I8859-13 → ()
The I8859-13 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-13 codeset.

• I8859-14 → ()
The I8859-14 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-14 codeset.

• I8859-15 → ()
The I8859-15 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-15 codeset.

• I8859-16 → ()
The I8859-16 constant is used by the set-transcoding-mode method to specify the
class transcoding mode that corresponds to the ISO-8859-16 codeset.

1.4. Constructors.

• Transcoder → (none)
The Transcoder constructor creates a default transcoder that operates in default
mode by using the identity function.

• Transcoder → (constant)
The Transcoder constructor creates a transcoder with the argument mode.

1.5. Methods.

• set-transcoding-mode → none (constant)
The set-transcoding-mode method sets the class transcoding mode.

• get-transcoding-mode → constant (none)
The get-transcoding-mode method returns the class transcoding mode.

• valid-p → Byte—Character (Boolean)
The valid-p predicate returns true if character can be transcoded. If the argument
is a byte, the method returns true if the byte can be transcoded to a character.
If the argument is a character, the method returns true if the character can be
transcoded to a byte.

• encode → Byte (Character)
The encode method encodes a byte into a character. If the character cannot be
encoded, an exception is raised.

• decode → Character (Byte)
The decode method decodes a character into a byte. If the character cannot be
decoded, an exception is raised.

138 14. STANDARD INPUT/OUTPUT REFERENCE

2. Object Stream

The Stream class is a base class for the standard streams. The class is automatically
constructed by a derived class and provides the common methods for all streams.

2.1. Predicate.

• stream-p

2.2. Inheritance.

• Transcoder

2.3. Constants.

• BYTE → ()
The BYTE constant is used by the set-coding-mode method to specify the stream
coding mode. In byte mode, each character is assumed to be coded with one byte.
This value affects the getu and write methods

• UTF-8 → ()
The UTF-8 constant is used by the set-coding-mode method to specify the stream
coding mode. In UTF-8 mode, each character is assumed to be coded in the UTF-8
representation. This value affects the getu and write methods

2.4. Methods.

• set-encoding-mode → none (constant—String)
The set-encoding-mode method sets the stream coding mode that affects how char-
acters are read or written. In the enumeration form, the method only sets the
stream coding mode which is either byte or UTF-8 mode. In the string mode, the
method sets the stream encoding mode and the transcoding mode.

• get-encoding-mode → constant (none)
The get-coding-mode method returns the stream coding mode which affects how
characters are read or written.

3. OBJECT INPUTSTREAM 139

3. Object InputStream

The InputStream class is a base class for the standard i/o module. The class is auto-
matically constructed by a derived class and provides the common methods for all input
streams. The input stream is associated with a timeout value which is used for read opera-
tion. By default, timeout is infinite, meaning that any read without data will be a blocking
one.

3.1. Predicate.

• input-stream-p

3.2. Inheritance.

• Stream

3.3. Methods.

• flush → none—Character (none)
The flush method the input stream buffer. In the first form, without argument,
the input stream buffer is entirely flushed. In the second form, the input stream
buffer is flushed until the character argument is found.

• get-timeout → Integer (none)
The get-timeout method returns the input stream timeout. A negative value is a
blocking timeout.

• set-timeout → none (Integer)
The set-timeout method sets the input stream timeout. A negative value is a
blocking timeout. Changing the stream timeout does not cancel any pending read
operation.

• read → Byte (none)
The read method returns the next byte available from the input stream. If the
stream has been closed or consumed, the end-of-stream byte is returned.

• read → Buffer (Integer)
The read method returns a buffer object with at most the number of bytes specified
as an argument. The buffer length method should be used to check how many bytes
have been placed in the buffer.

• readln → String (none)
The readln method returns the next line available from the input stream. If the
stream has been closed or consumed, the end-of-stream character is returned.

• getu → Character (none)
The getu method returns the next available Unicode character from the input
stream. If the stream has been closed or consumed, the end-of-stream character
is returned. During the read process, if the character decoding operation fails, an
exception is raised.

• valid-p → Boolean (none—Integer)
The valid-p method returns true if the input stream is in a valid state. By valid
state, we mean that the input stream can return a byte with a call to the read
method. With one argument, the method timeout after the specified time in
milliseconds. If the timeout is null, the method returns immediately. With -1, the
method blocks indefinitely if no byte is available.

• eos-p → Boolean (none)
The eos-p predicate returns true if the input stream has been closed or all bytes
consumed.

• pushback → Integer (Byte—Character—String)
The pushback method push-back a byte, an Unicode character or a string in the

140 14. STANDARD INPUT/OUTPUT REFERENCE

input stream. Subsequent calls to read will return the last pushed bytes. Pushing
a string is equivalent to push each encoded bytes of the string. The method returns
the number of bytes pushed back.

• consume → Integer (none)
The consume method consumes an input stream and places the read characters
into the stream buffer. The method returns the number of consumed characters.
This method is generally used in conjonction with the to-string method.

• get-buffer-length → Integer (none)
The get-buffer-length method returns the length of the push-back buffer.

• to-string → String (none)
The to-string method returns a string representation of the input stream buffer.

4. OBJECT INPUTFILE 141

4. Object InputFile

The InputFile class provide the facility for an input file stream. An input file instance
is created with a file name. If the file does not exist or cannot be opened, an exception is
raised. The InputFile class is derived from the InputStream class.

4.1. Predicate.

• input-file-p

4.2. Inheritance.

• InputStreamNameable

4.3. Constructors.

• InputFile → (String)
The InputFile constructor create an input file by name. If the file cannot be
created, an exception is raised. The first argument is the file name to open.

• InputFile → (String String)
The InputFile constructor create an input file by name and encoding mode. If the
file cannot be created, an exception is raised. The first argument is the file name
to open.The second argument is the encoding mode to use.

4.4. Methods.

• close → Boolean (none)
The close method close the input file and returns true on success, false otherwise.
In case of success, multiple calls return true.

• lseek → none (Integer)
The lseek set the input file position to the integer argument. Note that the push-
back buffer is reset after this call.

• length → Integer (none)
The length method returns the length of the input file. The length is expressed in
bytes.

• get-modification-time → Integer (none)
The get-modification-time method returns the modification time of the file. The
returned argument is suitable for the Time and Date system classes.

142 14. STANDARD INPUT/OUTPUT REFERENCE

5. Object InputMapped

The InputMapped class is an input stream class that provides the facility for reading a
mapped input stream. The input stream is mapped at construction given a file name, a size
and a file offset. An anonymous mapped input stream can also be designed with a buffer
object. Finally, without any information an always valid null input stream is constructed.

5.1. Predicate.

• input-mapped-p

5.2. Inheritance.

• InputStream

5.3. Constructors.

• InputMapped → (none)
The InputMapped constructor create a null input stream. This stream acts as a
null character generator.

• InputMapped → (String—Buffer)
The InputMapped constructor create a mapped input stream by name or buffer.
In the first form, a string is used as file name to be mapped an input stream. In
the second form, a buffer is mapped as an input stream.

• InputMapped → (String Integer Integer)
The InputMapped constructor create a mapped input stream by name, size and
offset. The string argument is the file name to map. The second argument is
the desired mapped size. The third argument is the offset inside the file before
mapping it.

5.4. Methods.

• lseek → none (Integer)
The lseek set the input mapped file position to the integer argument. Note that
the push-back buffer is reset after this call.

• length → Integer (none)
The length method returns the length of the input mapped file. The length is
expressed in bytes.

6. OBJECT INPUTSTRING 143

6. Object InputString

The InputString class provide the facility for an input string stream. The class is
initialized or set with a string and then behaves like a stream. This class is very useful to
handle generic stream method without knowing what kind of stream is behind it.

6.1. Predicate.

• input-string-p

6.2. Inheritance.

• InputStream

6.3. Constructors.

• InputString → (none)
The InputString constructor creates an empty input string.

• InputString → (String)
The InputString constructor creates an input string by value.

6.4. Methods.

• get → Byte (none)
The get method returns the next available byte from the input stream but do not
remove it.

• set → none (String)
The set method sets the input string by first resetting the push-back buffer and
then initializing the input string with the argument value.

144 14. STANDARD INPUT/OUTPUT REFERENCE

7. Object InputTerm

The InputTerm class provide the facility for an input terminal stream. The input
terminal reads byte from the standard input stream. No line editing facility is provided
with this class This is a low level class, and normally, the Terminal class should be used
instead.

7.1. Predicate.

• input-term-p

7.2. Inheritance.

• InputStreamOutputStream

7.3. Constructors.

• InputTerm → (none)
The InputTerm constructor creates a default input terminal.

7.4. Methods.

• set-ignore-eos → none (Boolean)
The set-ignore-eos method set the input terminal end-of-stream ignore flag.
When the flag is on, any character that match a ctrl-d is changed to the end-of-
stream mapped character returned by a read. This method is useful to prevent a
reader to exit when the ctrl-d byte is generated.

• set-mapped-eos → none (Byte)
The set-mapped-eos method set the input terminal end-of-stream mapped char-
acter. By default the character is set to end-of-line . This method should be
used in conjunction with the set-ignore-eos method.

8. OBJECT OUTPUTSTREAM 145

8. Object OutputStream

The OutputStream class is a base class for the standard i/o module. The class is au-
tomatically constructed by a derived class and provide the common methods for all output
streams.

8.1. Predicate.

• output-stream-p

8.2. Inheritance.

• Stream

8.3. Methods.

• write → Integer (Literal+)
The write method write one or more literal arguments on the output stream. This
method returns the number of characters written.

• writeln → none (Literal+)
The writeln method write one or more literal argument to the output stream and
finish with a newline. This method return nil.

• errorln → none (Literal+)
The errorln method write one or more literal argument to the associated output
error stream and finish with a newline. Most of the time, the output stream and
error stream are the same except for an output terminal.

• newline → none (none)
The newline method writes a new line byte to the output stream. The method
returns nil.

• write-soh → none (none)
The write-soh method writes a start-of-heading character to the output stream.

• write-stx → none (none)
The write-stx method writes a start-of-transmission character to the output
stream.

• write-etx → none (none)
The write-etx method writes an end-of-transmission character to the output
stream.

• write-eos → none (none)
The write-eos method writes an end-of-stream character to the output stream.

146 14. STANDARD INPUT/OUTPUT REFERENCE

9. Object OutputFile

The OutputFile class provide the facility for an output file stream. An output file
instance is created with a file name. If the file does not exist, it is created. If the file cannot
be created, an exception is raised. Once the file is created, it is possible to write literals.
The class is derived from the OutputStream class. By default an output file is created if
it does not exist. If the file already exist, the file is truncated to 0. Another constructor
for the output file gives more control about this behavior. It takes two boolean flags that
defines the truncate and append mode. The t-flag is the truncate flag. The a-flag is the
append flag.

9.1. Predicate.

• output-file-p

9.2. Inheritance.

• OutputStreamNameable

9.3. Constructors.

• OutputFile → (String)
The OutputFile constructor create an output file by name. If the file cannot be
created, an exception is raised. The first argument is the file name to create.

• OutputFile → (String String)
The OutputFile constructor create an output file by name and encoding mode. If
the file cannot be created, an exception is raised. The first argument is the file
name to create. The second argument is the encoding mode to use.

• OutputFile → (String Boolean Boolean)
The OutputFile constructor create an output file by name. If the file cannot be
created, an exception is raised. The first argument is the file name to create. The
second argument is the truncate flag. If the file already exists and the truncate
flag is set, the file is truncated to 0. The third argument is the append mode. If
set to true, the file is open in append mode.

9.4. Methods.

• close → Boolean (none)
The close method closes the output file and returns true on success, false otherwise.
In case of success, multiple calls returns true.

10. OBJECT OUTPUTSTRING 147

10. Object OutputString

The OutputString class provide the facility for an output string stream. The class is
initially empty and acts as a buffer which accumulate the write method bytes. The to-string
method can be used to retrieve the buffer content.

10.1. Predicate.

• output-string-p

10.2. Inheritance.

• OutputStream

10.3. Constructors.

• OutputString → (none)
The OutputString constructor creates a default output string.

• OutputString → (String)
The OutputString constructor creates an output string by value. The output string
stream is initialized with the string value.

10.4. Methods.

• flush → none (none)
The flush method flushes the output stream by resetting the stream buffer.

• length → Integer (none)
The length method returns the length of the output string buffer.

• to-string → String (none)
The to-string method returns a string representation of the output string buffer.

148 14. STANDARD INPUT/OUTPUT REFERENCE

11. Object OutputBuffer

The OutputBuffer class provide the facility for an output byte stream. The class is
initially empty and acts as a buffer which accumulate the write method bytes. The to-string
method can be used to retrieve the buffer content as a string. The format method can be
used to retrieve the buffer content as an octet string. content.

11.1. Predicate.

• output-buffer-p

11.2. Inheritance.

• OutputStream

11.3. Constructors.

• OutputBuffer → (none)
The OutputBuffer constructor creates a default output buffer.

• OutputBuffer → (String)
The OutputBuffer constructor creates an output buffer by value. The output buffer
stream is initialized with the string value.

11.4. Methods.

• flush → none (none)
The flush method flushes the output stream by resetting the stream buffer.

• length → Integer (none)
The length method returns the length of the output buffer.

• to-string → String (none)
The to-string method returns a string representation of the output buffer.

• format → String (none)
The format method returns an octet string representation of the output buffer.

12. OBJECT OUTPUTTERM 149

12. Object OutputTerm

The OutputTerm class provide the facility for an output terminal. The output terminal
is defined as the standard output stream. If the standard error stream needs to be used,
the ErrorTerm class is more appropriate.

12.1. Predicate.

• output-term-p

12.2. Inheritance.

• OutputStream

12.3. Constructors.

• OutputTerm → (none)
The OutputTerm constructor creates a default output terminal

• ErrorTerm → (none)
The ErrorTerm constructor creates a default error terminal

150 14. STANDARD INPUT/OUTPUT REFERENCE

13. Object Terminal

The Terminal class provides the facility for an i/o terminal with line editing capability.
The class combines the InputTerm and OutputTerm methods.

13.1. Predicate.

• terminal-p

13.2. Inheritance.

• InputTermOutputTerm

13.3. Constructors.

• Terminal → (none)
The Terminal constructor creates a default terminal which combines an input and
output terminal with line editing capabilities.

13.4. Methods.

• set-primary-prompt → none (String)
The set-primary-prompt method sets the terminal primary prompt which is used
when the read-line method is called.

• set-secondary-prompt → none (String)
The set-secondary-prompt method sets the terminal secondary prompt which is
used when the read-line method is called.

• get-primary-prompt → String (none)
The get-primary-prompt method returns the terminal primary prompt.

• get-secondary → String (none)
The get-secondary-prompt method returns the terminal secondary prompt.

14. OBJECT INTERCOM 151

14. Object Intercom

The Intercom class is the interpreter communication class. The class operates with two
streams. One output stream is used to send serialized data while the input stream is used
to deserialize data. The send method can be used to send the data, while the recv can be
used to receive them.

14.1. Predicate.

• intercom-p

14.2. Inheritance.

• Object

14.3. Constructors.

• Intercom → (none)
The Intercom constructor creates a default interpreter communication object.
There is no stream attached to it.

• Intercom → (InputStream—OutputStream)
The Intercom constructor creates an interpreter communication object with an
input or an output stream. In the first form, the input stream object is used by
the recv method to read data object. In the second form, the output stream object
is used by the send method to send data object.

• Intercom → (InputStream OutputStream)
The Intercom constructor creates an interpreter communication object with an
input and an output stream.

14.4. Methods.

• send → none (Object)
The send method serialize the object argument with the help of the output stream
bound to the interpreter communication object. If there is no output stream,
nothing is sent.

• recv → Object (none)
The recv method deserialize an object with the help of the input stream bound to
the interpreter communication object. If there is no output stream, nil is returned.

• request → Object (Object)
The request method perform an atomic send receive operation.

• set-input-stream → none (InputStream)
The set-input-stream method binds an input stream to the interpreter communi-
cation object.

• get-input-stream → InputStream (none)
The get-input-stream method returns the input stream bound to the interpreter
communication object.

• set-output-stream → none (OutputStream)
The set-output-stream method binds an output stream to the interpreter commu-
nication object.

• get-output-stream → OutputStream (none)
The get-output-stream method returns the output stream bound to the interpreter
communication object.

152 14. STANDARD INPUT/OUTPUT REFERENCE

15. Object InputOutput

The InputOutput class implements an input-output stream with a buffer which holds
character during the processing of transit between the output stream to the input stream.
The theory of operation goes as follow. The internal buffer is filled with characters with the
help of the output stream. The characters are consumed from the buffer with the help of
the input stream (read method). If the buffer becomes empty the eos-p predicate returns
true, the valid-p predicate false and the read method will return the eos character. The
InputOutput buffer can also be initialized with a buffer. This provides a nice mechanism
to use a buffer like an input stream. The i/o operations implemented by this class are
non-blocking. As a consequence, it is not possible to suspend a thread with this class and
have it awaken when some characters are available in the input stream.

15.1. Predicate.

• input-output-p

15.2. Inheritance.

• InputStreamOutputStream

15.3. Constructors.

• InputOutput → (none)
The InputOutput constructor creates a default input/output stream.

• InputOutput → (String)
The InputOutput constructor creates an input/output stream initialized with the
string argument. The string argument is used to fill the string buffer.

15.4. Methods.

• get → Byte (none)
The get method returns the next available byte from the input stream but do not
remove it.

• set → none (String)
The set method sets the input string by first resetting the push-back buffer and
then initializing the input string with the argument value.

16. OBJECT SELECTOR 153

16. Object Selector

The Selector class provides some facilities to perform i/o multiplexing. The constructor
takes 0 or several stream arguments.The class manages automatically the differentiation
between the InputStream and the OutputStream objects. Once the class is constructed, it
is possible to get the first stream ready for reading or writing or all of them. It is also
possible to add more steams after construction with the add method. When a call to the
wait method succeeds, the method returns the first available stream. If the waitall method
is called, the method returns a vector with all ready steams. The selector can be configured
to operate in marking mode. In such mode, the selector can be marked as ready by a thread
independently of the bounded streams. This is a useful mechanism which can be used to
cancel a select loop. The mark method is designed to mark the selector while the marked-p
predicate returns true if the stream has been marked.

16.1. Predicate.

• selector

16.2. Inheritance.

• Object

16.3. Constructors.

• Selector → (none)
The Selector constructor creates a default stream selector.

• Selector → ([Boolean] [InputStream—OutputStream]*)
The Selector constructor creates a stream selector with 0 or more stream argu-
ments. If the first argument is a boolean, the selector is constructed marked mode.

16.4. Methods.

• add → none (InputStream—OutputStream)
The add method adds an input or output stream to the selector. If the stream is
both an input and an output stream, the preference is given to the input stream. If
this preference is not acceptable, the input-add or the output-add methods might
be preferable.

• input-add → none (InputStream)
The input-add method adds an input stream to the selector.

• output-add → none (OutputStream)
The output-add method adds an output stream to the selector.

• wait → Stream (none—Integer)
The wait method waits for a status change in the selector and returns the first
stream that has change status. With one argument, the selector time-out after the
specified time in milliseconds. Note that at the time of the return, several streams
may have changed status.

• wait-all → Vector (none—Integer)
The wait method waits for a status change in the selector and returns all streams
that has change status in a vector object. With one argument, the selector time-
out after the specified time in milliseconds. If the selector has timed-out, the vector
is empty.

• input-get → InputStream (Integer)
The input-get method returns the input streams in the selector by index. If the
index is out of bound, an exception is raised.

154 14. STANDARD INPUT/OUTPUT REFERENCE

• output-get → OutputStream (Integer)
The output-get method returns the output streams in the selector by index. If the
index is out of bound, an exception is raised.

• input-length → Integer (none)
The input-length method returns the number of input streams in the selector.

• output-length → Integer (none)
The output-length method returns the number of output streams in the selector.

• mark → none (none)
The mark method marks a selector object.

• marked-p → Boolean (none)
The marked-p predicate returns true if the selector has been marked.

17. OBJECT LOGTEE 155

17. Object Logtee

The Logtee class provides the facility of a logger object associated with an output stream.
When a message is added, the message is written to the output stream depending on an
internal flag. By default the tee mode is false and can be activated with the set-tee method.

17.1. Predicate.

• logtee-p

17.2. Inheritance.

• Logger

17.3. Constructors.

• Logtee → (none)
The Logtee constructor creates a default logger without an output stream.

• Logtee → (Integer)
The Logtee constructor creates a logger with a specific size without an output
stream. terminal

• Logtee → (OutputStream)
The Logtee constructor creates a logger with an output stream. The object is
initialized to operate in write mode.

• Logtee → (Integer OutputStream)
The Logtee constructor creates a logger with a specific size with an output stream.
The first argument is the logger size. The second argument is the output stream.

• Logtee → (Integer String OutputStream)
The Logtee constructor creates a logger with a specific size, an information string
and an output stream. The first argument is the logger size. The second argument
is information string. The third argument is the output stream.

17.4. Methods.

• set-tee-stream → none (OutputStream)
The set-tee-stream method sets the tee output stream. This stream is different
from the logger output stream

• get-tee-stream → OutputStream (none)
The get-tee-stream method returns the object output stream.

• set-tee → none (Boolean)
The set-tee method sets the object tee flag. When the flag is true, the logger writes
the added message on the output stream.

• get-tee → Boolean (none)
The get-tee method returns the object tee flag. When the flag is true, the logger
writes the added message on the output stream.

156 14. STANDARD INPUT/OUTPUT REFERENCE

18. Object Pathname

The Pathname class is a base class designed to manipulate system i/o paths. The class
operates with a directory name and a file name. Both names are kept separated to ease
the path manipulation. The path components can be extracted individually. However, it
shall be noted that the first component has a special treatment to process the root directory
name.

18.1. Predicate.

• pathname-p

18.2. Inheritance.

• Object

18.3. Constructors.

• Pathname → (none)
The Pathname constructor creates a default path name without file and directory
names.

• Pathname → (String)
The Pathname constructor creates a path name with a file name. The first string
argument is the file name.

• Pathname → (String String)
The Pathname constructor creates a pathname with a file and directory name.
The first string argument is the file name. The second string argument is the
directory name.

18.4. Methods.

• reset → none (none)
The reset method reset the path name by removing all path and file information.

• dir-p → Boolean (none)
The dir-p predicate returns true if the path is a directory.

• file-p → Boolean (none)
The file-p predicate returns true if the path is a file.

• set-file-name → none (String)
The set-file-name method set the path name file name. The string argument is
the file name.

• get-file-name → String (none)
The get-file-name method returns the path name file name.

• add-directory-name → none (String)
The add-directory-name method add the directory name to the directory path
component. The string argument is the directory name.

• set-directory-name → none (String)
The set-directory-name method set the directory name file name. The string ar-
gument is the directory name.

• get-directory-name → String (none)
The get-directory-name method returns the path name directory name.

• length → Integer (none)
The length method returns the number of directory path elements.

• get-path → String (Integer)
The get-path method returns a directory path element by index.

• get-root → String (none)
The get-root method returns the root component of a directory name.

18. OBJECT PATHNAME 157

• get-full → String (none)
The get-full method returns the full path name by combining the directory name
with the file name.

• add-path → none (String)
The add-path method add a new path component by name. The path is separated
into individual component and added to the directory path unless it is a root path.
If the file name is set, the file name is added as a directory component. If the path
is a root path, a new path name is rebuilt. This last case is equivalent to a call to
set-file-name .

• normalize → none (none)
The normalize method rebuild the path name by determining the full path nature
if possible. In case of success, the path structure reflects the actual path type.

158 14. STANDARD INPUT/OUTPUT REFERENCE

19. Object Pathlist

The Pathlist class is a base class designed to ease the manipulation of a file search path.
The class acts like a list of search paths and various facilities are provided to find a valid
path for a given name. The path list can be manipulated like any other list.

19.1. Predicate.

• pathlist-p

19.2. Inheritance.

• Object

19.3. Constructors.

• Pathlist → (none)
The Pathlist constructor creates a default path list.

• Pathlist → (Boolean—String)
The Pathlist constructor creates a path list with a local search flag or with an initial
path component. In the first form, a boolean argument controls the local search
flag. In the second for, a string argument is used as the initial path component.

19.4. Methods.

• reset → none (none)
The reset method resets the path list by clearing the local search flag and removing
all path components.

• local-p → Boolean (none)
The local-p predicate returns true if the local search flag is set.

• set-local-search → none (Boolean)
The set-local-search method sets the local search flag.

• length → Integer (none)
The length method returns the number of directory path elements.

• get-path → String (Integer)
The get-path method returns a directory path element by index.

• add-path → none (String)
The add-path method add a new path component by name. The string argument
is the name to add.

• file-p → Boolean (String)
The file-p predicate returns true if the file name argument can be resolved. If the
local search flag is set, the local directory is check first.

• resolve → String (String)
The resolve method returns a string representation of the resolved file path. If the
local search flag is set and the file name is found locally, the initial name argument
is returned.

19.5. Functions.

• dir-p → Boolean (String)
The dir-p function returns true if the argument name is a directory name, false
otherwise.

• file-p → Boolean (String)
The file-p function returns true if the argument name is a regular file name, false
otherwise.

19. OBJECT PATHLIST 159

• tmp-name → String (String?)
The tmp-name function returns a name suitable for the use as a temporary file
name. Without argument, a default prefix is used to build the name. An optional
string prefix can control the original name.

• tmp-path → String (String?)
The tmp-path function returns a path suitable for the use as a temporary file name.
Without argument, a default prefix is used to build the path. An optional string
prefix can control the original name.

• absolute-path → String (String+)
The absolute-path function returns an absolute path name from an argument list.
Without argument, the command returns the root directory name. With one or
several argument, the absolute path is computed from the root directory.

• relative-path → String (String+)
The relative-path function returns a relative path name from an argument list.
With one argument, the function returns it. With two or more arguments, the
relative path is computed by joining each argument with the previous one.

• rmfile → none (String+)
The rmfile function removes one or several files specified as the arguments. If one
file fails to be removed, an exception is raised.

• mkdir → none (String+)
The mkdir function creates one or several directories specified as the arguments.
If one directory fails to be created, an exception is raised.

• mhdir → none (String+)
The mhdir function creates hierarchically one or several directories specified as the
arguments. If one directory fails to be created, an exception is raised.

• rmdir → none (String+)
The rmdir function removes one or several directories specified as the arguments.
If one directory fails to be removed, an exception is raised.

• get-base-name → String (String)
The get-base-name function returns the base name from a path. The base name
can be either a file name or a directory name. By definition, a path is made of a
base path and a base name.

• get-base-path → String (String)
The get-base-path function returns the base path from a path. The base path is a
directory name. By definition, a path is made of a base path and a base name.

• get-extension → String (String)
The get-extension function returns the extension from a path.

• remove-extension → String (String)
The remove-extension function returns the extension from a path. In order to get
a base file name from a path, the get-base-name function must be called first.

160 14. STANDARD INPUT/OUTPUT REFERENCE

20. Object Directory

The Directory class provides some facilities to access a directory. By default, a directory
object is constructed to represent the current directory. With one argument, the object is
constructed from the directory name. Once the object is constructed, it is possible to retrieve
its content.

20.1. Predicate.

• directory-p

20.2. Inheritance.

• Object

20.3. Constructors.

• Directory → (none)
The Directory constructor creates a directory object those location is the current
directory. If the directory cannot be opened, an exception is raised.

• Directory → (String)
The Directory constructor create a directory object by name. If the directory
cannot be opened, an exception is raised. The first argument is the directory
name to open.

20.4. Methods.

• mkdir → Directory (String)
The mkdir method creates a new directory in the current one. The full path
is constructed by taking the directory name and adding the argument. Once the
directory is created, the method returns a directory object of the newly constructed
directory. An exception is thrown if the directory cannot be created.

• rmdir → none (String)
The rmdir method removes an empty directory. The full path is constructed by
taking the directory name and adding the argument. An exception is thrown if
the directory cannot be removed.

• rmfile → none (String)
The rmfile method removes a file in the current directory. The full path is con-
structed by taking the directory name and adding the argument. An exception is
thrown if the file cannot be removed.

• get-name → String (none)
The get-name method returns the directory name. If the default directory was
created, the method returns the full directory path.

• get-list → List (none)
The get-list method returns the directory contents. The method returns a list of
strings. The list contains all valid names at the time of the call, including the
current directory and the parent directory.

• get-files → List (none)
The get-files method returns the directory contents. The method returns a list of
strings of files. The list contains all valid names at the time of the call.

• get-subdirs → List (none)
The get-subdirs method returns the sub directories. The method returns a list of
strings of sub-directories. The list contains all valid names at the time of the call,
including the current directory and the parent directory.

• next-name → String (none)
The next-name method returns the next available name from the directory stream.
This method is useful when operating with a large number of elements.

20. OBJECT DIRECTORY 161

• next-path → String (none)
The next-path method returns the next available path name from the directory
stream. This method is useful when operating with a large number of elements.

• next-file-name → String (none)
The next-file-name method returns the next available file name from the directory
stream. This method is useful when operating with a large number of elements.

• next-file-path → String (none)
The next-file-path method returns the next available file path name from the di-
rectory stream. This method is useful when operating with a large number of
elements.

• next-dir-name → String (none)
The next-dir-name method returns the next available directory name from the
directory stream. This method is useful when operating with a large number of
elements.

• next-dir-path → String (none)
The next-dir-path method returns the next available directory path name from the
directory stream. This method is useful when operating with a large number of
elements.

162 14. STANDARD INPUT/OUTPUT REFERENCE

21. Object Logtee

The Logtee class is a message logger facility associated with an output stream. When
a message is added to the logger object, the message is also sent to the output stream, de-
pending on the controlling flags. The name ”logtee” comes from the contraction of ”logger”
and ”tee”. One particularity of the class is that without a stream, the class behaves like a
regular logger.

21.1. Predicate.

• logtee-p

21.2. Inheritance.

• Logger

21.3. Constructors.

• Logtee → (none)
The Logtee constructor creates a default logger without an output stream

• Logtee → (Integer)
The Logtee constructor creates a logger object with a specific size without an
output stream.

• Logtee → (Output)
The Logtee constructor creates a logger object with an output stream.

• Logtee → (Integer Output)
The Logtee constructor creates a logger object with a specific size and an output
stream. The first argument is the logger window size. The second argument is the
output stream.

• Logtee → (Integer String Output)
The Logtee constructor creates a logger object with a specific size, an information
string and an output stream. The first argument is the logger window size. The
second argument is the logger information string. The third argument is the output
stream.

21.4. Methods.

• set-output-stream → none (Output)
The set-output-stream method attaches the output stream to the logtee object.

• get-output-stream → Output (none)
The get-output-stream method returns the logtee output stream.

• set-tee → none (Boolean)
The set-tee method sets the logtee control flag. The control flag controls the
message display to the output stream.

• get-tee → Boolean (none)
The get-tee method returns the logtee output stream.

22. OBJECT NAMEDFIFO 163

22. Object NamedFifo

The NameFifo class is a string vector designed to operate as a stream fifo object. The
class provides the facility to read or write the fifo content from a stream. The stream can
be created by name for writing, in which case the named fifo operates as a backup object.

22.1. Predicate.

• named-fifo-p

22.2. Inheritance.

• StrvecNameable

22.3. Constructors.

• NamedFifo → (none)
The NamedFifo constructor creates a default named fifo without a backing name.
In this case the fifo cannot be read or written by stream.

• NamedFifo → (String)
The NamedFifo constructor creates a named fifo by name. The name is used as a
file name for reading or writing the fifo.

• NamedFifo → (String Boolean)
The NamedFifo constructor creates a named fifo by name. The name is used as a
file name for reading or writing the fifo.If the boolean argument is true, the fifo is
read.

22.4. Methods.

• read → none (none)
The read method reads the fifo file name and fill the fifo.

• write → none (none)
The write method writes the fifo contents to the fifo file name.

• set-name → none (String)
The set-name method sets the fifo file name.

164 14. STANDARD INPUT/OUTPUT REFERENCE

23. Object FileInfo

The FileInfo is a file information class that holds the primary information related to a
file, such like its size or its modification time. The file information is set at construction but
can be updated with the help of the update method.

23.1. Predicate.

• file-info-p

23.2. Inheritance.

• Nameable

23.3. Constructors.

• → (String)
The FileInfo constructor creates a file information by name. The string argument
is the file name to query.

23.4. Methods.

• length → Integer (none)
The length method returns the file size information.

• get-modification-time → Integer (none)
The get-modification-time method returns the file modification time. The time can
be used as an argument to the Time or Date object.

• update → none (none)
The update method the file information data.

CHAPTER 15

Standard Spreadsheet Module

The Standard Spreadsheet module is an original implementation that provides the neces-
sary objects for designing a spreadsheet. A spreasheet acts a great interface which structure
data in the form of record and sheets. Once structured, these data can be indexed, manip-
ulated and exported into various formats.

1. Spreadsheet concepts

The sole purpose of using a spreadsheet is to collect various data and store them in such
a way that they can be accessed later. Unlike standard spreadsheet system, the standard
spreadsheet module does not place restrictions on the data organization. The spreadsheet
module stores data in a hierarchical fashion. The basic data element is called a cell . A set
of cells is a record . A set of records is a sheet . A set of sheets and records is a folio .

1.1. Cell and data. A cell is a data container. There is only one data element per
cell. Eventually a name can be associated with a cell. The cell data can be any kind of
literals. Such literals are integer, real, boolean, character or strings.

1.2. Record. A record is a vector of cells. A record can be created by adding cell or
simply by adding data. If the record has a predefined size, the cell or data can be set by
indexing.

1.3. Sheet. A sheet is a vector of records. A sheet can be created by adding record.
Similarly, if the sheet has a predefined size, record cell or data can be added by indexing.
A sheet can also be seen as a 2 dimensional array of cells. For the purpose of managing
extra information, the sheet carry also several extra records, namely, the marker record ,
the header record and footer record as well as the tag vector and the signature .

1.4. Folio. A folio is a set of sheets and/or records. A folio of sheets permits to
structure data in the form of tables. Since cell, record and table can have a name, it is
possible to create link between various elements, thus creating a collection of structured
data.

2. Storage model

There are several ways to integrate data. In the simplest form, data are integrated in a
record list. A complex model can be built with a sheet. More complex models can also be
designed by using a folio.

2.1. Single record model. With a single record model, the data are accumulated in
a single array. This kind of data storing is particularly adapted for single list recording. As
a single record, the basic search and sorting algorithm can be applied. For instance, a list
name can be stored as a single record. With this view, there is no difference between a list,
a vector and a record. The record can also be named.

165

166 15. STANDARD SPREADSHEET MODULE

2.2. Record importation. Data are imported into the record, either by construction,
list or stream. Since the record object is a serializeable object, the importation process is also
performed automatically in the collection. The base record importation class implements a
simple importation model based on blank separated literals. Complex importation models
can be devised by derivation. A special case with a cons cell is also supported where the
car is the cell name and the cadr is the cell object.

1 # an example of file importation
2 1 "a string" ’a’
3 ’b’ ("cell name" 2) 123

The previous example shows the file structure that can be used to import cell data. The
fist line defines a record with 3 cells. The second line defines also a record with 3 cells. The
second cell is a named cell.

2.3. Record exportation. A record is an object that can be serialized. It can there-
fore be exported easily. However, in the serialized form, the record is in a binary form. It
is also possible to walk through the record and exports, for each cell its literal form.

3. Folio indexation

There are various ways to access a folio by reference. Since a folio can contain several
sheets, it seems natural to access them by tag. The other method is to index the cells in a
cross-reference album in order to access rapidly.

3.1. Sheet access model. The sheet access model uses a tag to access one or several
sheets in a folio. A tag is a string attached to a sheet. It is possible in a folio to have several
sheet with the same tag. It is also possible to attach several tags to a sheet. When a folio
is searched by tag, the first sheet that matches the tag is said to be the valid one. If all
sheets that match the requested tag are needed, it is possible to create a derived folio with
all sheets that match the requested tag.

3.2. Cell access model. The cell access model operates with a cross-reference table
built with an index. An index is a multiple entry record that stores the cell location. A cell
coordinate comprises the cell index in the record, the record index in the sheet and the sheet
index in the folio. If an index contains multiple entries, this indicates that several cells are
indexed. A cell cross-reference table is a collection of index. Generally the index name is
the cell name. When the cross-reference table is built, all cell of interests are scanned and
if a cell name exists, the cell is indexed in the cross-reference table. If there are several cells
with the same name, the index length associated with the name is the number of cells with
that name.

3.3. Search and access. The methodology for searching is to decide whether a sheet
or a cell should be accessible. If a sheet access is desired, the search by tag method is the
preferred way. This method assumes that the requested sheet is structured in a particular
way, known to the user. If a cell access seems more appropriate, a cross-reference table
should be built first, and the search done from it. In the case of search by tag, the method
is dynamic and operates well when sheets are added in a folio. When a cross-reference table
is used, proper care should be taken to rebuild the cross-reference table when some sheets
are added unless the user knows that there is no need for it.

4. Folio object

The Folio object is the primary object used for storing data. Although, a folio is a
collection of sheets, it the primary object that should be created when manipulating such
collection.

5. SHEET OBJECT 167

4.1. Creating a folio. The Folio object is built without argument. In this case, the
folio is empty. A predicate is available for testing the Folio object.

1 const sps (afnix:sps:Folio)
2 afnix:sps:folio-p sps # true

The constructor can operate also by name or by input stream. With a string, a new folio
those name is the argument is created. By stream, a new folio is created and loaded with
the input stream data. Eventually, the folio name can be set with the set-name command
and retrieved with the get-name command.

1 const sps (afnix:sps:Folio)
2 sps:set-name "planets"

5. Sheet object

The Sheet object is the primary object used to store data in a folio. Since a Folio object
is a collection of sheets, a sheet can be manipulated either by getting getting it from the
folio or by creating it independently and adding it into the folio.

5.1. Creating a sheet. An empty sheet can be created simply with or without name.
Without argument, an unnamed sheet is created. Similar to the Folio class, the sheet name
can be passed at construction or set with the set-name method. As usual a predicate is
provided.

1 const sht (afnix:sps:Sheet)
2 afnix:sps:sheet-p sht # true

When the sheet is created, it can be added to the folio spreadsheet with the add method.

1 const sht (afnix:sps:Sheet "data")
2 sps:add sht

5.2. Adding data to the sheet. The process of adding data to a sheet is a straight-
forward operation with the add-data method or the add method. With the add-data method,
data are added as literals. With the add method, data are added with the help of a record
object.

1 sht:add-data "Mercury" 4840 "1407:36"
2 sht:add-data "Venus" 12400 "5819:51"
3 sht:add-data "Earth" 12756 "23:56"
4 sht:add-data "Mars" 6800 "24:37"
5 sht:add-data "Jupiter" 142800 "9:50"
6 sht:add-data "Saturn" 120800 "10:14"
7 sht:add-data "Uranus" 47600 "10:49"
8 sht:add-data "Neptune" 44600 "15:40"
9 sht:add-data "Pluto" 5850 "153:17"

10 sht:add-data "Sedna" 1800 "960:00"

Data can be imported in a sheet by importation with an input stream. During the
importation, the serialized data are decoded and placed sequentially in the stream.

5.3. Sheet sorting. A sheet can be sorted with the sort method. The sort method
uses the first integer argument as the column number. The second optional argument is a
boolean argument that selects the sorting method which can be ascending (by default) or
descending if the flag is false.

1 sht:sort 0
2 sht:sort 1 false

168 15. STANDARD SPREADSHEET MODULE

6. Record object

The Record object is an alternative to the sheet data filling. With the help of the add
method, a record can be added to a sheet.

6.1. Creating a record. A record is a named object that acts as a vector of cells.
The record name can be set either by construction or with the set-name method. As usual
a predicate is provided.

1 const rcd (afnix:sps:Record)
2 afnix:sps:record-p # true

6.2. Filling a record. A record can be filled either with literal data or Cell objects.
In the first case, the cell is automatically created for each literal added to the record. The
add method add a cell or literal to the record.

1 const rcd (Record)
2 rcd:add "Mercury" 4840 "1407:36"

For data extraction, the length method returns the record length. Data can be extracted
by index with either the get or map method. The get method returns the record cell while
the map method returns the cell literal.

7. Object search

The search methodology is divided either by sheet or cells. In a folio, the search is done
in terms of sheets while the construction of a cross-reference table is required for searching
cells.

7.1. Searching in a folio. The Folio object provides the primary mean to search for
sheet. The find and lookup methods return a sheet by tag. The first sheet that matches the
tag is returned by these methods. The find method returns nil if the sheet cannot be found
while the lookup method throws an exception.

1 # get a sheet by tag
2 const sheet (folio:lookup "the tag")

If there are several sheets that matched the tag, the filter method is more appropriate.
The filter method returns a new folio that contains the sheet that matches the requested
tag.

1 # get a sub-folio by tag
2 const sf (folio:filter "the tag")

7.2. Searching for a cell. The Folio object also provides the method for building
a cross-reference table. The cross-reference table is represented by the Xref object. By
default, a complete Xref object table is built with the getxref folio method. Such method,
scan all cells in the folio and add them in the cross-reference table if the cell has a name.

1 # get a default xref table
2 const xref (folio:getxref)

The cross-reference table can also be built by searching for sheet tags. With a string
argument, the getxref search for all sheets that matches the tag and then build a cross-
reference table. This method is equivalent to the operation of building a new folio by tag
with the filter method and then building the cross-reference table.

7. OBJECT SEARCH 169

1 # get a xref table by tag
2 const xref (folio:getxref "the tag")
3 # another method
4 const sf (folio:filter "the tag")
5 const xref (sf:getxref)

A cross-reference table can also be built by cell index and/or record index. With a cell
index, the cross-reference table is built by indexing the sheet column. With both the cell
and record indexes, the cross-reference table is built by indexing all cells at the coordinate
for all sheets.

1 # get a xref table by cell index
2 const xref (folio:getxref 0)
3 # get a xref table by cell and record index
4 const xref (folio:getxref 0 1)

CHAPTER 16

Standard Spreadsheet Reference

171

172 16. STANDARD SPREADSHEET REFERENCE

1. Object Cell

The Cell class is a data container. There is only one data element per cell. Eventually
a name can be associated with a cell. The cell data can be any kind of literals. Such literals
are integer, real, boolean, character or strings. A cell is the basic block used to build a
spreadsheet.

1.1. Predicate.

• cell-p

1.2. Inheritance.

• Nameable

1.3. Constructors.

• Cell → (none)
The Cell constructor create a default cell with no name and no value. When
evaluated, the cell returns nil.

• Cell → (Literal)
The Cell constructor create a default cell by value. The argument is a literal object
which can be viewed with its string representation.

• Cell → (String Literal)
The Cell constructor create a default cell by name and value. The first argument
is the cell name. The second argument is a literal object which can be viewed with
its string representation.

1.4. Methods.

• get → Literal (none)
The get method returns the cell literal value.

• set → none (Literal)
The set method sets the cell literal value.

• get-name → String (none)
The get-name method returns the cell name.

• set-name → none (String)
The set-name method sets the cell name.

2. OBJECT PERSIST 173

2. Object Persist

The Persist class is a base class for the AFNIX spreadsheet module. The class defines
the methods that are used to read of write a particular persistent object. When saving, the
object name is retreived with the get name method. The saveas method does the same as
save but takes a file name argument.

2.1. Predicate.

• persist-p

2.2. Inheritance.

• Nameable

2.3. Methods.

• save → none (none)
The save method saves the current object.

• saveas → none (String)
The saveas method saves the current object into the file those name is the string
argument.

174 16. STANDARD SPREADSHEET REFERENCE

3. Object Record

The Record class is a cell container. A record can be created by adding cell or simply
by adding data. If the record has a predefined size, the cell or data can be set by indexing.
A name can be attached to the record. Facilities are provided to access directly the cell
associated with the record. A record can also be created by name.

3.1. Predicate.

• record-p

3.2. Inheritance.

• Persist

3.3. Constructors.

• Record → (none)
The Record constructor create an empty record with no name and no cell.

• Record → (String)
The Record constructor create an empty record by name name. The argument is
the record name to use.

3.4. Methods.

• add → none (Cell—Literal...)
The add method adds one or several cell objects to the record. In the first form,
the argument is a cell that is added in the record. In the second form, the argument
is a literal that is used to create a cell by value.

• get → Cell (Integer)
The get method returns a record cell by index. The index must be within the
record range or an exception is raised.

• map → Literal (Integer)
The map method map a record cell by index. The index must be within the record
range or an exception is raised. The cell is mapped to a literal object.

• set → none (Integer Cell—Literal)
The set method sets the record cell by index. The record index must be valid in
order to succeed. A new cell is created prior the record update. The previous cell
data is lost including its name.

• sort → none (none—Boolean)
The sort method sorts a record in place. Without argument, the record is sorted
in ascending order. The optional boolean argument specifies the sorting mode. If
true, the record is sorting in ascending order and in descending order if false.

• find → Cell (String)
The find method finds a cell by name. If the cell is not found, the nil object is
returned. This method is similar to the lookup method.

• get-index → Integer (String)
The get-index method finds a cell index by name. If the cell is not found, an
exception is raised. The index is the cell position in the record.

• lookup → Cell (String)
The lookup method finds a cell by name. If the cell is not found, an exception is
raised. This method is similar to the find method.

• length → Integer (none)
The length method returns the record length.

• get-name → String (none)
The get-name method returns the record name.

3. OBJECT RECORD 175

• reset → none (none)
The reset method rest the record. The record name is not changed but all record
cells are removed.

• set-name → none (String)
The set-name method sets the record name.

176 16. STANDARD SPREADSHEET REFERENCE

4. Object Sheet

The Sheet class is a record container. A sheet can be created by adding records. Sim-
ilarly, if the sheet has a predefined size, record cell or data can be added by indexing. A
sheet can be also seen as a 2 dimensional array of cells. Like a record, a sheet can be named.
Without argument, a default sheet is created. With a string argument, the sheet is created
with an initial name.

4.1. Predicate.

• sheet-p

4.2. Inheritance.

• Persist

4.3. Constructors.

• Sheet → (none)
The Sheet constructor create an empty sheet with no name and no cell.

• Sheet → (String)
The Sheet constructor create an empty sheet by name. The argument is the sheet
name to use.

• Sheet → (String String)
The Sheet constructor create an empty sheet by name and info. The first argument
is the sheet name to use. The second argument is the sheet information string.

4.4. Methods.

• add → none (Record)
The add method adds a record to the sheet.

• get → Record (Integer)
The get method returns a sheet record by index. The index must be within the
sheet range or an exception is raised.

• set → none (Integer Record)
The set method sets the sheet record by index. The sheet index must be valid in
order to succeed.

• sort → none (none—Integer—Boolean—Integer Boolean)
The sort method sorts the sheet in place. By default, the sheet is sorted in as-
cending order with column 0. With one argument, the argument can be either
the sorting mode or the column number. If the mode is true, the sheet is sorted
in ascending mode. If the mode is false, the sheet is sorted in descending mode.
With two arguments, the first argument is the column number and the second is
the sorting mode.

• length → Integer (none)
The length method returns the sheet length.

• convert → PrintTable ([Integer [Integer [Boolean]]])
The convert method converts the sheet into a print-table representation. Without
argument, the whole sheet is converted. With one argument, the sheet is converted
unto a maximum of rows. The second optional argument is the start index that
default to 0. The third optional argument is the literal format. By default, the
literal is formatted as a string. If the flag is true, the literal is formatted as a literal
string representation.

• add-data → none ([Cell—Literal]+)
The add-data method adds one or several cell object to a sheet record. The sheet
record is initially created and the object elements are added sequentially to the

4. OBJECT SHEET 177

record. In the first form, the argument is a cell that is added in the record. In the
second form, the argument is a literal that is used to create a cell by value.

• add-marker → none ([Literal]+)
The add-marker method adds one or several literal objects to a sheet marker
record.

• marker-length → Integer (none)
The marker-length method returns the number of markers defined for this sheet.

• get-marker → Cell (Integer)
The get-marker method returns a marker cell by index from the sheet marker
record.

• set-marker → none (Integer Literal)
The set-marker method set the sheet marker record by index and literal.

• find-marker → Integer (String)
The find-marker method find the marker index. The argument is the marker string
value.

• add-sign → none ([Literal]+)
The add-sign method adds one or several literal objects to a sheet sign record.

• signature-length → Integer (none)
The signature-length method returns the number of signs defined for this sheet.

• get-sign → Cell (Integer)
The get-sign method returns a sign cell by index from the sheet sign record.

• set-sign → none (Integer Literal)
The set-sign method set the sheet sign record by index and literal.

• find-sign → Integer (String)
The find-sign method find the sign index. The argument is the sign string value.

• add-header → none (Cell—Literal...)
The add-header method adds one or several cell object to a sheet header record.
In the first form, the argument is a cell that is added in the record. In the second
form, the argument is a literal that is used to create a cell by value.

• get-header → Cell (Integer)
The get-header method returns a header cell by index from the sheet header record.

• map-header → Literal (Integer)
The map-header method maps to a literal object a header cell by index from the
sheet header record.

• set-header → none (Integer Literal)
The set-header method set the header record by index and literal. The cell asso-
ciated with the header record is updated with the literal value.

• add-footer → none ([Cell—Literal]+)
The add-footer method adds one or several cell object to a sheet footer record. In
the first form, the argument is a cell that is added in the record. In the second
form, the argument is a literal that is used to create a cell by value.

• get-footer → Cell (Integer)
The get-footer method returns a footer cell by index from the sheet footer record.

• map-footer → Literal (Integer)
The map-footer method maps to a literal object an footer cell by index from the
sheet footer record.

• set-footer → none (Integer Literal)
The set-footer method set the footer record by index and literal. The cell associated
with the footer record is updated with the literal value.

178 16. STANDARD SPREADSHEET REFERENCE

• get-name → String (none)
The get-name method returns the sheet name.

• set-name → none (String)
The set-name method sets the sheet name.

• get-info → String (none)
The get-info method returns the sheet info.

• set-info → none (String)
The set-info method sets the sheet info.

• add-tag → none ([String]+)
The add-tag method adds a tag into the tags vector. The tag can be used to mark
a sheet in a folio.

• tag-p → Boolean (string)
The tag-p method returns true if the given tag is defined for this sheet.

• tag-length → Integer (none)
The tag-length method returns the number of tags defined for this sheet.

• get-tag → String (Integer)
The get-tag method returns a tag by index.

• set-tag → none (Integer Literal)
The set-tag method set the sheet tag record by index and literal.

• find-tag → Integer (String)
The find-tag method find the tag index. The argument is the tag string value.

• reset → none (none)
The reset method resets the sheet. The name and information is unchanged during
this operation.

5. OBJECT FOLIO 179

5. Object Folio

The Folio class is a sheet container. A folio of sheets can be structured to handle various
data organization. Since all objects are named, it is possible to index them for fast data
search. An empty folio can be created by name or filled with an input stream.

5.1. Predicate.

• folio-p

5.2. Inheritance.

• Persist

5.3. Constructors.

• Folio → (none)
The Folio constructor create an empty folio with no name and no cell.

• Folio → (String)
The Folio constructor create an empty folio by name. The argument is the folio
name to use.

• Folio → (String String)
The Folio constructor create an empty folio by name and info. The first argument
is the folio name to use. The second argument is the folio information string.

• Folio → (InputStream)
The Folio constructor create an empty folio and fill it by reading the data from
the input stream. The input stream must have the data in a serialized form.

5.4. Methods.

• write → none (OutputStream)
The write method write the folio contents to an output stream. The written form
is a serialized form.

• add → none (Sheet)
The add method adds a sheet to the folio.

• get → Sheet (Integer)
The get method returns a sheet by index. The index must be within the folio
range or an exception is raised.

• set → none (Integer Sheet)
The set method sets the folio by index and sheet. The index must be within the
folio range or an exception is raised.

• tag-p → Boolean (String)
The tag-p method returns true if a sheet with the tag argument exists in the folio.

• find → Sheet (String)
The find method finds a sheet by tag. The first found sheet those tag is matched
is returned. In the case that multiple sheet share the same tag, the filter should
be used. If no sheet is found the method return the nil object.

• lookup → Sheet (String)
The lookup method finds a sheet by tag. The first found sheet those tag is matched
is returned. In the case that multiple sheet share the same tag, the filter should
be used. If no sheet is found the method throws an exception. This method is
similar to the find method.

• filter → Folio (String)
The filter method return a new folio with sheets that match the argument tag. If
no sheet is found, the folio is empty.

180 16. STANDARD SPREADSHEET REFERENCE

• reset → none (none)
The reset method resets the folio. The name and information is unchanged during
this operation.

• length → Integer (none)
The length method returns the folio length.

• get-name → String (none)
The get-name method returns the folio name.

• set-name → none (String)
The set-name method sets the folio name.

• get-info → String (none)
The get-info method returns the folio info.

• set-info → none (String)
The set-info method sets the folio info.

• get-xref → Xref (none—Integer—String—Integer Integer)
The get-xref method returns a cross-reference table from the folio. Without argu-
ment, the whole folio is scanned and all named cells are added in the cross-reference
table. With an integer argument, all cells that matches the cell index argument
are added in the cross-reference table. With a string argument, all cells that have
the same name are added in the table. Finally, with two arguments that represents
the cell index and the record index are used, all cells are added in the table with
these two coordinates.

6. OBJECT INDEX 181

6. Object Index

The Index class is a class that maintain a cell index at the folio level. A cell index is
composed of the sheet index, the record index and the cell index. The index object can be
used to access in a generic way a particular cell. Additionally, the folio name can also be
stored in the index. It is possible to have multiple records that represents the same cell.

6.1. Predicate.

• index-p

6.2. Inheritance.

• Object

6.3. Constructors.

• Index → (none)
The Index constructor creates an empty index.

• Index → (Integer)
The Index constructor creates an index with a cell index as its coordinate.

• Index → (Integer Integer)
The Integer constructor creates an index with a cell and record indexes as its
coordinate. The first argument is the cell index. The second argument is the
record index.

• Index → (Integer Integer Integer)
The Index constructor creates an index with a cell, record and sheet indexes as
its coordinate. The first argument is the cell index. The second argument is the
record index. The third argument is the sheet index.

6.4. Methods.

• add → none (Integer—Integer Integer—Integer Integer Integer)
The add method adds a new index coordinate in the index object. In the first
form, the cell index is used as the coordinate. In the second form, the cell and
record indexes are used as the coordinate. In the third form, the cell, record and
sheet indexes are used as the coordinate.

• reset → none (none)
The reset method reset the index by removing all attached coordinates.

• length → Integer (none)
The length method returns the index length. The index length is the number of
coordinate entries in the index.

• exists-p → Boolean (Integer—Integer Integer—Integer Integer Integer)
The exists-p predicate returns true if a coordinate entry exists in the index. In
the first form, the cell index is used as the coordinate. In the second form, the cell
and record indexes are used as the coordinate. In the third form, the cell, record
and sheet indexes are used as the coordinate.

• set-index-cell → none (Integer Integer)
The set-index-cell method sets the cell index by position. The first argument is
the coordinate position. The second argument is the cell index to use.

• update-index-cell → none (Integer)
The update-index-cell method updates the cell index for all entries in the index.
The argument is the new cell index to use for the update process.

• get-index-cell → Integer (Integer)
The get-index-cell method returns the cell index for a particular entry. The argu-
ment is the entry position.

182 16. STANDARD SPREADSHEET REFERENCE

• set-index-record → none (Integer Integer)
The set-index-record method sets the record index by position. The first argument
is the coordinate position. The second argument is the record index to use.

• update-index-record → none (Integer)
The update-index-record method updates the record index for all entries in the
index. The argument is the new record index to use for the update process.

• get-index-record → Integer (Integer)
The get-index-record method returns the record index for a particular entry. The
argument is the entry position.

• set-index-sheet → none (Integer Integer)
The set-index-sheet method sets the sheet index by position. The first argument
is the coordinate position. The second argument is the cell sheet to use.

• update-index-sheet → none (Integer)
The update-index-sheet method updates the sheet index for all entries in the index.
The argument is the new sheet index to use for the update process.

• get-index-sheet → Integer (Integer)
The get-index-sheet method returns the sheet index for a particular entry. The
argument is the entry position.

7. OBJECT XREF 183

7. Object Xref

The Xref class is a cross-reference class. The class maintains the association between a
name and an index. with a particular name, an index entry is created if it does not exists.
Such entry can be later used to access the cell content by index.

7.1. Predicate.

• xref-p

7.2. Inheritance.

• Object

7.3. Constructors.

• Xref → (none)
The Xref constructor creates an empty cross-reference object.

7.4. Methods.

• add → none (String [Integer—Integer Integer—Integer Integer Integer])
The add method adds a new reference in the table. The first argument is always
the index name. In the first form, the cell index is used as the coordinate. In the
second form, the cell and record indexes are used as the coordinate. In the third
form, the cell, record and sheet indexes are used as the coordinate.

• get → Index (Integer—String)
The get method returns an Index object either by name or position. With an
integer argument, the index is obtained by position. With a string argument, the
index with the matching name is returned.

• reset → none (none)
The reset method resets the cross-reference table.

• length → Integer (none)
The length method returns the length of the cross-reference table.

• lookup → Index (String)
The lookup method returns an index those name is the matching argument. If the
index cannot be found, an exception is raised.

• exists-p → Boolean (String)
The exists-p predicate returns true if an index those name is the matching argu-
ment exists in the cross-reference table.

• get-name → String (Integer)
The get-name method returns the index name by position.

CHAPTER 17

Standard System Access Module

The Standard System Access module is an original implementation of various objects
designed to provide a specialized access to the underlying system. Most of the system
accesses are provided in the form of functions which have been designed to be portable as
possible. One example of this, are the time and date management objects.

1. Interpreter information

The interpreter provides a set reserved names that are related to the system platform.
Example 0501.als demonstrates the available information.

1 zsh> axi 0501.als
2 program name : afnix
3 operating system name : linux
4 operating system type : unix
5 afnix official uri : http://www.afnix.org

1.1. Interpreter version. The interpreter version is identified by 3 numbers called
major , minor and patch numbers. A change in the major number represents a major
change in the writing system. The minor number indicates a major change in the interface
or libraries. A change in the patch number indicates bug fixes. All values are accessed via
the interpreter itself. The major-version , minor-version , patch-version symbols are bound
to these values.

1 println "major version number : "
2 interp:major-version
3 println "minor version number : "
4 interp:minor-version
5 println "patch version number : "
6 interp:patch-version

1.2. Operating system. The operating system is uniquely identified by its name.
The operating system type (or category) uniquely identifies the operating system flavor.

1 println "operating system name : "
2 interp:os-name
3 println "operating system type : "
4 interp:os-type

1.3. Program information. Program information are carried by two symbols that
identifies the program name and the official uri. While the first might be useful, the second
one is mostly used by demo programs.

1 println "program name : "
2 interp:program-name
3 println "afnix official uri : "
4 interp:afnix-uri

185

186 17. STANDARD SYSTEM ACCESS MODULE

Function Description
exit terminate with an exit code
sleep pause for a certain time
get-pid get the process identifier
get-env get an environment variable
get-host-name get the host name
get-user-name get the user name

2. System services

The system services module provides various functions that cannot be classified into
any particular category.

The exit function terminates the program with an exit code specified as the argument.
The sleep function pause the specific thread for a certain time. The time argument is
expressed in milliseconds. The get-pid function returns the process identifier. The get-env
function returns the environment variable associated with the string argument. The get-
host-name function returns the host name. The host name can be either a simple name or a
canonical name with its domain, depending on the system configuration. The get-user-name
function returns the current user name.

3. Time and date

The Time and Date classes are classes designed to manipulate time and date. The
writing system operates with a special coordinated time which uses the reference of Jan
1st 0000 in a modified proleptic Gregorian calendar. This proleptic feature means that
the actual calendar (Gregorian) is extended beyond year 1582 (its introduction year) and
modified in order to support the year 0. This kind of calendar is somehow similar to the
astronomical Gregorian calendar except that the reference date is 0 for the writing system.
This method presents the advantage to support negative time. It should be noted that the
0 reference does not means year 1BC since year 0 did not exist at that time (the concept of
zero is fairly new) and more important, the date expressed in the form 1BC generally refers
to the Julian calendar since the date is before 1582. Although, the class provides several
methods to access the time and date fields, it is also possible to get a string representation
that conforms to ISO-8601 or to RFC-2822.

3.1. Time and date construction. By default, a time instance of current time is
constructed. This time reference is obtained form the machine time and adjusted for the
internal representation. One feature of this class is that the time instance does not have to
be bounded with 24 hours. The time stored is the absolute time, which should be considered
like a temporal reference – or date – those origin is 0 in some calendar representation.

1 const time (afnix:sys:Time)
2 assert true (afnxi:sys:time-p time)

A simple time representation can also be built by hours, minutes and seconds. In this
case, the time is a time definition at day 0 in the reference calendar.

1 const time (afnix:sys:Time 12 23 54)

By default a date instance of the current date is constructed. The current date is
computed from the machine time and expressed in a particular calendar. By default, the
engine uses a special Gregorian calendar as explained before. The important point here s
that the date will show up like the user should expect.

1 const date (afnix:sys:Date)
2 assert true (afnix:sys:date-p date)

3. TIME AND DATE 187

A date instance can also be built with an absolute time expressed in seconds or with
specific elements. with one argument, the date is expressed in seconds since the origin. Since
the internal representation is 64 bits, the date room is quite large. For example, the absolute
time to represent Jan 1st 1970 is 62167219200 seconds. This epoch is used to adjust the
system time on some UNIX system. Another way to create a specific date is to use the date
descriptor by year, month and day. With 6 arguments, the time components can also be
given. This makes Date one of the constructor that accept the largest number of arguments.

1 const date (afnix:sys:Date 1789 7 14 16 0 0)
2 assert true (afnix:sys:date-p date)

In the previous example, at 17:00 local time, 16:00Z although the concept of time zone
was not formalized, the Bastille surrenders on July 14 1789. This example shows that
extreme care should be used when dealing with old dates. Note that a simpler form could
have been used to set that date. With 3 argument, the date is set at time 00:00:00Z.

1 const date (afnix:sys:Date 1789 7 14)
2 assert true (afnix:sys:date-p date)

3.2. Time and date representation. Except for some special applications – like the
cookie maximum age –, the date representation is quite standard and can be found either
in the form of ISO-8601 or RFC-2822.

1 const time (afnix:sys:Time 12 44 55)
2 println (time:format) # 12:44:55
3 println (time:to-iso) # 14:44:55
4 println (time:to-rfc) # 14:44:55 +0200

in the first form, the time is represented naturally by hour, minutes and seconds. By
default, it is the local time that is given. With a flag set to true, the UTC time is displayed.
In the second form, the time is displayed in the ISO-8601 form which is the same as before.
In the third form, the time is displayed in the RFC-2822 form. This form is always expressed
locally with the timezone difference associated with it. It shall be noted that the ISO-8601
mandate to use the suffix ’Z’ for the zulu time. This is the difference when using the true
flag with the format and to-iso methods.

1 println (time:format true) # 12:44:55
2 println (time:to-iso true) # 12:44:55Z

The date representation also operates with 3 methods, namely format , to-iso and to-rfc
. For example, if the time is 12:00 in Paris on July 14th 2000, the date will be displayed
like below.

1 const date (afnix:sys:Date 2000 7 14 12 0 0)
2 # Fri Jul 14 07:00:00 2000
3 println (date:format)
4 # 2000-07-14T07:00:00
5 println (date:to-iso)
6 # Fri, 14 Jul 2000 07:00:00 -0500
7 println (date:to-rfc)

The example show the local time. With UTC display, only the first two methods can
be used.

1 const date (afnix:sys:Date 2000 7 14 12 0 0)
2 println (date:format true) # Fri Jul 14 12:00:00 2000
3 println (date:to-iso true) # 2000-07-14T12:00:00Z

188 17. STANDARD SYSTEM ACCESS MODULE

4. Options parsing

The Options class provides a convenient mechanism to define a set of options and to
parse them in a simple way. The object is constructed by specifying which option is valid
and how it behaves. The arguments can be passed to the object for subsequent analysis.
An option can be either a unique option or a string option. In this later case, multiple value
for the same option can be accepted. In that case, the option is said to be a string vector
option. An option can be also an option list. I that case, the option is defined with a set
of valid string. A list option is associated with a boolean flag for each string defined with
that option.

4.1. Option creation. An Options is created by invoking the constructor with or
without a user message. The user message is used by the usage method which display an
information message.

1 const options (
2 afnix:sys:Options "axi [options] [file [arguments]]")

Eventually, the set-user-message method can be used to set the user message.

4.2. Options definition. The process of defining options is done by specifying the
option character, eventually an option string and an option message.

1 options:add-unique-option ’h’
2 "print this help message"
3 options:add-unique-option ’v’
4 "print system version"
5 options:add-vector-option ’i’
6 "add a resolver path"
7 options:add-string-option ’e’
8 "force the encoding mode"
9 options:add-list-option ’f’ "assert"

10 "enable assertion checks"
11 options:add-list-option ’f’ "nopath"
12 "do not set initial path"

The above example shows the option descriptors for the interpreter. Since [i] is a
vector option, multiple occurrences of that option is allowed. It shall be noted that the list
option [f assert] is a debug option. This means that this option is always set when the
program is compiled in debug mode.

4.3. Options parsing and retrieval. A string vector is parsed with the parse method.
Generally, the vector argument is the interpreter argument vector defined in the qualified
name interp:args . When the vector has been successfully parsed, it is possible to check the
option that have been set.

1 options:parse (Vector "-h")
2 if (options:get-unique-option ’h’) {
3 options:usage
4 afnix:sys:exit 0
5 }

In the above example, the option vector is parsed with the parse method. The get-
unique-option method returns true for the [h] thus triggering the display of the usage
message.

1 usage: axi [options] [file [arguments]]
2 [h] print this help message
3 [v] print system version
4 [i path] add a resolver path
5 [e mode] force the encoding mode
6 [f assert] enable assertion checks
7 [f nopath] do not set initial path

4. OPTIONS PARSING 189

If the option is a string option, the get-string-option will return the string associated
with that option. It shall be noted that the get-unique-option method can be used to check
if the option has been set during the parsing process. If the option is a vector option, the
get-vector-option method is more appropriate. In this case, a vector is returned with all
strings matching this option.

1 options:parse (
2 Vector "-i" "../" "-i" "../.." -e "UTF-08" "hello")

In the previous example, the vector option [i] is set two times. The associated vector
option has therefore a length of 2. The string option [e] is set to UTF-08 . For this option
[e] , the get-unique-option method will return true. Finally, the vector argument is filled
with one string argument.

CHAPTER 18

Standard System Access Reference

191

192 18. STANDARD SYSTEM ACCESS REFERENCE

1. Object Time

The Time class is a simple class used to manipulate time. The AFNIX system oper-
ates with a special coordinated time which uses the reference of Jan 1st 0000 in a modified
proleptic gregorian calendar . Note that the time can be negative. Although, the class
provides several methods to access the time fields, it is also possible to get a string repre-
sentation that conforms to ISO-8601 or to RFC-2822. The resolution is in seconds. With
1 argument, the object is initialized with the time clock specified as an integer argument.
With 3 arguments, the time is expressed with its different elements.

1.1. Predicate.

• time-p

1.2. Inheritance.

• Object

1.3. Constructors.

• Time → (none)
The Time constructor create a time object which is initialized with the current
time.

• Time → (Integer)
The Time constructor create a time object which is initialized with the time ar-
gument.

• Time → (Integer Integer Integer)
The Time constructor create a time object which is initialized with the time specific
arguments, which are the hour, the minutes and the seconds.

1.4. Methods.

• add → none (Integer)
The add method adds the time argument in seconds to the current time value This
method is useful to compute a time in the future, in reference to the current time.

• add-minutes → none (Integer)
The add-minutes method adds one or several minutes to the current time value.
This method is useful to compute a time in the future, in reference to the current
time.

• add-hours → none (Integer)
The add-hour method adds one or several hours to the current time value. This
method is useful to compute a time in the future, in reference to the current time.

• add-days → none (Integer)
The add-days method adds one or several days to the current time value. This
method is useful to compute a time in the future, in reference to the current time.

• set-time → none (Integer)
The set-time method set the absolute time in seconds.

• get-time → Integer (none—Boolean)
The get-time method returns absolute time in seconds. Without argument, the
absolute time is computed in reference to the UTC time. With a boolean argument
set to true , the time is computed in reference to the UTC time. If the argument
is false , the local time is used.

1. OBJECT TIME 193

• seconds → Integer (none—Boolean)
The seconds method returns the number of seconds after the minute. Without
argument, the number of seconds is computed in reference to the UTC time. With
a boolean argument set to true , the number of seconds is computed in reference
to the UTC time. If the argument is false , the local time is used. The returned
value is the range 0 to 60.

• minutes → Integer (none—Boolean)
The minutes method returns the number of minutes after the hour. Without
argument, the number of minutes is computed in reference to the UTC time. With
a boolean argument set to true , the number of minutes is computed in reference
to the UTC time. If the argument is false , the local time is used. The returned
value is the range 0 to 60.

• hours → Integer (none—Boolean)
The hours method returns the number of hours since midnight. Without argument,
the number of hours is computed in reference to the local time. With a boolean
argument set to true , the number of hours is computed in reference to the UTC
time. If the argument is false , the local time is used. The returned value is the
range 0 to 23.

• format → String (none—Boolean)
The format method returns a formatted representation of the time in the form
of hh:mm:ss . Without argument, the time is computed in reference to the local
time. With a boolean argument set to true , the time is computed in reference to
the UTC time. If the argument is false , the local time is used.

• to-iso → String (none—Boolean)
The to-iso method returns a formatted representation of the time as specified by
ISO-8601. Without argument, the time is computed in reference to the local time.
With a boolean argument set to true , the time is computed in reference to the
UTC time. If the argument is false , the local time is used.

• to-rfc → String (none—Boolean)
The to-rfc method returns a formatted representation of the time as specified by
RFC-2822. Without argument, the time is computed in reference to the local time.
With a boolean argument set to true , the time is computed in reference to the
UTC time. If the argument is false , the local time is used.

• get-base-day → Integer (none)
The get-base-day method returns the absolute time rounded to the beginning of
the day.

194 18. STANDARD SYSTEM ACCESS REFERENCE

2. Object Date

The Date is a derived class designed to manipulate dates. The date computation is based
on an modified proleptic gregorian calendar. This proleptic feature means that the actual
calendar (gregorian) is extended beyond year 1582 (its introduction year) and modified in
order to support the year 0. This kind of calendar is somehow similar to the astronomical
gregorian calendar except that the reference date is 0 for special coordinated time. This
method presents the advantage to support negative time. It should be noted that the 0
reference does not means year 1BC since year 0 did not exist at that time (the concept of
zero is fairly new) and more important, the date expressed in the form 1BC generally refers
to the Julian calendar since the date is before 1582. Although, the class provides several
methods to access the individual fields, it is also possible to get a string representation that
conforms to ISO-8601 or to RFC-2822. With 1 argument, the date is initialized with the
time clock specified as an integer argument. With 3 or 6 arguments, the date is expressed
with its different elements.

2.1. Predicate.

• date-p

2.2. Inheritance.

• Time

2.3. Constructors.

• Date → (none)
The Date constructor creates a date object which is initialized with the current
time.

• date → (Integer)
The Date constructor creates a date object which is initialized with the time ar-
gument.

• Date → (Integer Integer Integer)
TheDate constructor creates a date object which is initialized with the date specific
arguments, which are the year, the month and the day in the month.

• Date → (Integer Integer Integer Integer Integer Integer)
TheDate constructor creates a date object which is initialized with the date specific
arguments, which are the year, the month, the day in the month, the hours, the
minutes and the seconds.

2.4. Methods.

• year → Integer (none—Boolean)
The year method returns the date year. the returned value is an absolute year
value which can be negative. Without argument, the number of years is computed
in reference to the local time. With a boolean argument set to true , the number
of years is computed in reference to the UTC time. If the argument is false , the
local time is used.

• month → Integer (none—Boolean)
The month method returns the month in the year. The returned value is the range
1 to 12. Without argument, the number of months is computed in reference to
the local time. With a boolean argument set to true , the number of months is
computed in reference to the UTC time. If the argument is false , the local time
is used.

• day → Integer (none—Boolean)
The day method returns the day in the month. The returned value is the range
1 to 31. Without argument, the number of days is computed in reference to the

2. OBJECT DATE 195

local time. With a boolean argument set to true , the number of days is computed
in reference to the UTC time. If the argument is false , the local time is used.

• week-day → Integer (none—Boolean)
The week-day method returns the day in the week. The returned value is the range
0 to 6 in reference to Sunday. Without argument, the day is computed in reference
to the local time. With a boolean argument set to true , the day is computed in
reference to the UTC time. If the argument is false , the local time is used.

• year-day → Integer (none—Boolean)
The year-day method returns the day in the year. The returned value is the range
1 to 366 in reference to January 1st. Without argument, the day is computed
in reference to the local time. With a boolean argument set to true , the day is
computed in reference to the UTC time. If the argument is false , the local time
is used.

• map-day → String (none—Boolean)
The map-day method returns a formatted representation of the day. Without
argument, the day is computed in reference to the local time. With a boolean
argument set to true , the day is computed in reference to the UTC time. If the
argument is false , the local time is used.

• map-month → String (none—Boolean)
Themap-month method returns a formatted representation of the month. Without
argument, the month is computed in reference to the local time. With a boolean
argument set to true , the month is computed in reference to the UTC time. If
the argument is false , the local time is used.

• format → String (none—Boolean)
The format method returns a formatted representation of the date. Without ar-
gument, the time is computed in reference to the local time. With a boolean
argument set to true , the time is computed in reference to the UTC time. If the
argument is false , the local time is used.

• to-iso → String (none—Boolean)
The to-iso method returns a formatted representation of the date as specified by
ISO-8601. Without argument, the time is computed in reference to the local time.
With a boolean argument set to true , the time is computed in reference to the
UTC time. If the argument is false , the local time is used.

• to-web → String (none)
The to-web method returns a formatted representation of the date as specified by
RFC-1123.

• to-rfc → String (none—Boolean)
The to-rfc method returns a formatted representation of the date as specified by
RFC-2822. Without argument, the time is computed in reference to the local time.
With a boolean argument set to true , the time is computed in reference to the
UTC time. If the argument is false , the local time is used.

• to-date → String (none—Boolean)
The to-date method returns a formatted representation of the date only as specified
by ISO-8601. With this method, the time value is not included in the represen-
tation. Without argument, the date is computed in reference to the local time.
With a boolean argument set to true , the date is computed in reference to the
UTC time. If the argument is false , the local time is used.

• to-time → String (none—Boolean)
The to-time method returns a formatted representation of the time as returned by
the Time format method. Without argument, the time is computed in reference

196 18. STANDARD SYSTEM ACCESS REFERENCE

to the local time. With a boolean argument set to true , the time is computed in
reference to the UTC time. If the argument is false , the local time is used.

• add-years → none (Integer)
The add-years method add one or several years to the current date.

• add-months → none (Integer)
The add-months method add one or several months to the current date.

3. OBJECT OPTIONS 197

3. Object Options

The Options class is a simple class used to define and retrieve user options. The object
is constructed by specifying which option is valid and how it behaves. The arguments can
be passed to the object for subsequent analysis. An option can be either a unique option or
a string option. In this later case, multiple value for the same option can be accepted. In
that case, the option is said to be a string vector option. An option can be also an option
list. I that case, the option is defined with a set of valid string. A list option is associated
with a boolean flag for each string defined with that option.

3.1. Predicate.

• options-p

3.2. Inheritance.

• Object

3.3. Constructors.

• Options → (none)
The Options constructor creates a default option object without a user message.

• Options → (String)
The Options constructor creates an empty option object with a user message. The
user message is used by the usage method.

3.4. Methods.

• reset → none (none)
The reset method resets the object data structure but do not remove the option
descriptors. After a reset operation, the class is ready to parse another string
vector.

• usage → none (none)
The usage method prints a usage message with a user message and a one line
description per option. removing all messages.

• parse → Vector (none)
The parse method parse a vector and fill the option data structure. The parse
method is generally called with the interpreter argument vector.

• empty-p → Boolean (none)
The empty- predicate returns true if the argument vector is empty. The argument
vector is filled wit the string that are not options during the parsing process.

• add-list-option → none (Character String String)
The add-list-option method creates a new list option. The list option is defined
by the option character and the option string. The first argument is the option
character. The second argument is the option list string. The third argument
is the option message. During the parsing process, the list option have a string
argument which must match one string associated with the option character.

• get-unique-option → Character String (none)
The add-unique-option method creates a new single option. The option is defined
only by its character. The first argument is the option character. The second
argument is the option message. During the parsing process, a unique option does
not have an argument.

• add-string-option → none (Character String)
The add-string-option method creates a new string option. The option is defined
only by its character. The first argument is the option character. The second
argument is the option message. During the parsing process, a string option have
a string argument.

198 18. STANDARD SYSTEM ACCESS REFERENCE

• add-vector-option → Character String (none)
The add-vector-option method creates a new vector option. The option is defined
only by its character. The first argument is the option character. The second
argument is the option message. During the parsing process, a vector option have
a string argument which is accumulated in a vector.

• set-user-message → none (String)
The set-user-message method sets the global option user message. The user mes-
sage is used by the usage method.

• get-user-message → String (none)
The get-user-message method returns the global option user message. The user
message is used by the usage method.

• get-unique-option → Boolean (Character)
The get-unique-option method returns the flag associated with an option. If the
option has been detected during the parsing process, the method returns true.
This method works also for string option or list option to indicate if the string has
been set for that option. with a vector option, it is simpler to get the vector and
check for the vector length. The first argument is the option character to use for
testing.

• get-string-option → String (Character)
The get-string-option method returns the string associated with a string option.
In order to make sure that a string option has been properly set during the pars-
ing process, it is recommended to use the get-unique-option method. The first
argument is the option character to use for the string retrieval.

• get-vector-option → Vector (Character)
The get-vector-option method returns the vector associated with a vector option.
The first argument is the option character to use for the vector retrieval.

• get-vector-arguments → Vector (none)
The get-vector-arguments method returns the vector arguments built during the
parsing process.

3.5. Functions.

• exit → none (Integer)
The exit function terminates the executing program with the exit code specified
as the argument.

• sleep → none (Integer)
The sleep function pause the specific thread for a certain time. The time argument
is expressed in milliseconds. This function returns nil.

• get-option → String (Character)
The get-option function returns a formatted string equivalent to the system option
as specified by the character argument.

• get-unique-id → Integer (none)
The get-unique-id function returns an unique integer number. The returned num-
ber is unique across the session.

• get-pid → Integer (none)
The get-pid function returns the process identifier (pid). The returned value is a
positive integer.

• get-env → String (String)
The get-env function returns the environment variable associated with the string
argument. If the environment does not exist an exception is raised.

• get-host-fqdn → String (none)
The get-host-fqdn function returns the host fully qualified domain name. This

3. OBJECT OPTIONS 199

is the combined host and domain names which is sometimes called the canonical
name.

• get-domain-name → String (none)
The get-domain-name function returns the host domain name.

• get-host-name → String (none)
The get-host-name function returns the host name. If the host does not have a
domain name, the host name is equal to the fully qualified domain name.

• get-user-name → String (none)
The get-user-name function returns the current user name.

CHAPTER 19

Standard Text Processing Module

The Standard Text Processing module is an original implementation of an object collec-
tion dedicated to text processing. Although text scaning is the current operation perfomed
in the field of text processing, the module provides also specialized object to store and index
text data. Text sorting and transliteration is also part of this module.

1. Scanning concepts

Text scanning is the ability to extract lexical elements or lexemes from a stream. A
scanner or lexical analyzer is the principal object used to perform this task. A scanner is
created by adding special object that acts as a pattern matcher. When a pattern is matched,
a special object called a lexeme is returned.

1.1. Pattern object. A Pattern object is a special object that acts as model for the
string to match. There are several ways to build a pattern. The simplest way to build it is
with a regular expression. Another type of pattern is a balanced pattern. In its first form,
a pattern object can be created with a regular expression object.

1 # create a pattern object
2 const pat (afnix:txt:Pattern "$d+")

In this example, the pattern object is built to detect integer objects.

1 pat:check "123" # true
2 pat:match "123" # 123

The check method return true if the input string matches the pattern. The match
method returns the string that matches the pattern. Since the pattern object can also
operates with stream object, the match method is appropriate to match a particular string.
The pattern object is, as usual, available with the appropriate predicate.

1 afnix:txt:pattern-p pat # true

Another form of pattern object is the balanced pattern. A balanced pattern is deter-
mined by a starting string and an ending string. There are two types of balanced pattern.
One is a single balanced pattern and the other one is the recursive balanced pattern. The
single balanced pattern is appropriate for those lexical element that are defined by a char-
acter. For example, the classical C-string is a single balanced pattern with the double quote
character.

1 # create a balanced pattern
2 const pat (afnix:txt:Pattern "ELEMENT" "<" ">")
3 pat:check "<xml>" # true
4 pat:match "<xml>" # xml

In the case of the C-string, the pattern might be more appropriately defined with an ad-
ditional escape character . Such character is used by the pattern matcher to grab characters
that might be part of the pattern definition.

201

202 19. STANDARD TEXT PROCESSING MODULE

1 # create a balanced pattern
2 const pat (afnix:txt:Pattern "STRING" "’" ’\\’)
3 pat:check "’hello’" # true
4 pat:match "’hello’" # "hello"

In this form, a balanced pattern with an escape character is created. The same string
is used for both the starting and ending string. Another constructor that takes two strings
can be used if the starting and ending strings are different. The last pattern form is the
balanced recursive form. In this form, a starting and ending string are used to delimit the
pattern. However, in this mode, a recursive use of the starting and ending strings is allowed.
In order to have an exact match, the number of starting string must equal the number of
ending string. For example, the C-comment pattern can be viewed as recursive balanced
pattern.

1 # create a c-comment pattern
2 const pat (afnix:txt:Pattern "STRING" "/*" "*/")

1.2. Lexeme object. The Lexeme object is the object built by a scanner that contains
the matched string. A lexeme is therefore a tagged string. Additionally, a lexeme can carry
additional information like a source name and index.

1 # create an empty lexeme
2 const lexm (afnix:txt:Lexeme)
3 afnix:txt:lexeme-p lexm # true

The default lexeme is created with any value. A value can be set with the set-value
method and retrieved with the get-value methods.

1 lexm:set-value "hello"
2 lexm:get-value # hello

Similar are the set-tag and get-tag methods which operate with an integer. The source
name and index are defined as well with the same methods.

1 # check for the source
2 lexm:set-source "world"
3 lexm:get-source # world
4 # check for the source index
5 lexm:set-index 2000
6 lexm:get-index # 2000

2. Text scanning

Text scanning is the ability to extract lexical elements or lexemes from an input stream.
Generally, the lexemes are the results of a matching operation which is defined by a pattern
object. As a result, the definition of a scanner object is the object itself plus one or several
pattern object.

2.1. Scanner construction. By default, a scanner is created without pattern objects.
The length method returns the number of pattern objects. As usual, a predicate is associated
with the scanner object.

1 # the default scanner
2 const scan (afnix:txt:Scanner)
3 afnix:txt:scanner-p scan # true
4 # the length method
5 scan:length # 0

The scanner construction proceeds by adding pattern objects. Each pattern can be
created independently, and later added to the scanner. For example, a scanner that reads
real, integer and string can be defined as follow:

4. TRANSLITERATION 203

1 # create the scanner pattern
2 const REAL (
3 afnix:txt:Pattern "REAL" [$d+.$d*])
4 const STRING (
5 afnix:txt:Pattern "STRING" """ ’\\’)
6 const INTEGER (
7 afnix:txt:Pattern "INTEGER" [$d+|"0x"$x+])
8 # add the pattern to the scanner
9 scanner:add INTEGER REAL STRING

The order of pattern integration defines the priority at which a token is recognized.
The symbol name for each pattern is optional since the functional programming permits the
creation of patterns directly. This writing style makes the scanner definition easier to read.

2.2. Using the scanner. Once constructed, the scanner can be used as is . A stream
is generally the best way to operate. If the scanner reaches the end-of-stream or cannot
recognize a lexeme, the nil object is returned. With a loop, it is easy to get all lexemes.

1 while (trans valid (is:valid-p)) {
2 # try to get the lexeme
3 trans lexm (scanner:scan is)
4 # check for nil lexeme and print the value
5 if (not (nil-p lexm)) (println (lexm:get-value))
6 # update the valid flag
7 valid:= (and (is:valid-p) (not (nil-p lexm)))
8 }

In this loop, it is necessary first to check for the end of the stream. This is done with
the help of the special loop construct that initialize the valid symbol. As soon as the the
lexeme is built, it can be used. The lexeme holds the value as well as it tag.

3. Text sorting

Sorting is one the primary function implemented inside the text processing module.
There are three sorting functions available in the module.

3.1. Ascending and descending order sorting. The sort-ascent function operates
with a vector object and sorts the elements in ascending order. Any kind of objects can be
sorted as long as they support a comparison method. The elements are sorted in placed by
using a quick sort algorithm.

1 # create an unsorted vector
2 const v-i (Vector 7 5 3 4 1 8 0 9 2 6)
3 # sort the vector in place
4 afnix:txt:sort-ascent v-i
5 # print the vector
6 for (e) (v) (println e)

The sort-descent function is similar to the sort-ascent function except that the object
are sorted in descending order.

3.2. Lexical sorting. The sort-lexical function operates with a vector object and sorts
the elements in ascending order using a lexicographic ordering relation. Objects in the vector
must be literal objects or an exception is raised.

4. Transliteration

Transliteration is the process of changing characters my mapping one to another one.
The transliteration process operates with a character source and produces a target character
with the help of a mapping table. The transliteration process is not necessarily reversible
as often indicated in the literature.

204 19. STANDARD TEXT PROCESSING MODULE

4.1. Literate object. The Literate object is a transliteration object that is bound
by default with the identity function mapping. As usual, a predicate is associate with the
object.

1 # create a transliterate object
2 const tl (afnix:txt:Literate)
3 # check the object
4 afnix:txt:literate-p tl # true

The transliteration process can also operate with an escape character in order to map
double character sequence into a single one, as usually found inside programming language.

1 # create a transliterate object by escape
2 const tl (afnix:txt:Literate ’\\’)

4.2. Transliteration configuration. The set-map configures the transliteration map-
ping table while the set-escape-map configure the escape mapping table. The mapping is
done by setting the source character and the target character. For instance, if one want to
map the tabulation character to a white space, the mapping table is set as follow:

1 tl:set-map ’\t’ ’ ’

The escape mapping table operates the same way. It should be noted that the mapping
algorithm translate first the input character, eventually yielding to an escape character and
then the escape mapping takes place. Note also that the set-escape method can be used to
set the escape character.

1 tl:set-map ’\t’ ’ ’

4.3. Transliteration process. The transliteration process is done either with a string
or an input stream. In the first case, the translate method operates with a string and returns
a translated string. On the other hand, the read method returns a character when operating
with a stream.

1 # set the mapping characters
2 tl:set-map ’\h’ ’w’
3 tl:set-map ’\e’ ’o’
4 tl:set-map ’\l’ ’r’
5 tl:set-map ’\o’ ’d’
6 # translate a string
7 tl:translate "helo" # word

CHAPTER 20

Standard Text Processing Reference

205

206 20. STANDARD TEXT PROCESSING REFERENCE

1. Object Pattern

The Pattern class is a pattern matching class based either on regular expression or
balanced string. In the regex mode, the pattern is defined with a regex and a matching is
said to occur when a regex match is achieved. In the balanced string mode, the pattern is
defined with a start pattern and end pattern strings. The balanced mode can be a single or
recursive. Additionally, an escape character can be associated with the class. A name and a
tag is also bound to the pattern object as a mean to ease the integration within a scanner.

1.1. Predicate.

• pattern-p

1.2. Inheritance.

• Object

1.3. Constructors.

• Pattern → (none)
The Pattern constructor creates an empty pattern.

• Pattern → (String—Regex)
The Pattern constructor creates a pattern object associated with a regular expres-
sion. The argument can be either a string or a regular expression object. If the
argument is a string, it is converted into a regular expression object.

• Pattern → (String String)
The Pattern constructor creates a balanced pattern. The first argument is the
start pattern string. The second argument is the end balanced string.

• Pattern → (String String Character)
The Pattern constructor creates a balanced pattern with an escape character .
The first argument is the start pattern string. The second argument is the end
balanced string. The third character is the escape character .

• Pattern → (String String Boolean)
The Pattern constructor creates a recursive balanced pattern. The first argument
is the start pattern string. The second argument is the end balanced string.

1.4. Constants.

• REGEX → ()
The REGEX constant indicates that the pattern is a regular expression.

• BALANCED → ()
The BALANCED constant indicates that the pattern is a balanced pattern.

• RECURSIVE → ()
The RECURSIVE constant indicates that the pattern is a recursive balanced pat-
tern.

1.5. Methods.

• check → Boolean (String)
The check method checks the pattern against the input string. If the verification
is successful, the method returns true, false otherwise.

• match → String (String—InputStream)
The match method attempts to match an input string or an input stream. If the
matching occurs, the matching string is returned. If the input is a string, the end
of string is used as an end condition. If the input stream is used, the end of stream
is used as an end condition.

1. OBJECT PATTERN 207

• set-tag → none (Integer)
The set-tag method sets the pattern tag. The tag can be further used inside a
scanner.

• get-tag → Integer (none)
The get-tag method returns the pattern tag.

• set-name → none (String)
The set-name method sets the pattern name. The name is symbol identifier for
that pattern.

• get-name → String (none)
The get-name method returns the pattern name.

• set-regex → none (String—Regex)
The set-regex method sets the pattern regex either with a string or with a regex
object. If the method is successfully completed, the pattern type is switched to
the REGEX type.

• set-escape → none (Character)
The set-escape method sets the pattern escape character. The escape character is
used only in balanced mode.

• get-escape → Character (none)
The get-escape method returns the escape character.

• set-balanced → none (String— String String)
The set-balanced method sets the pattern balanced string. With one argument,
the same balanced string is used for starting and ending. With two arguments,
the first argument is the starting string and the second is the ending string.

208 20. STANDARD TEXT PROCESSING REFERENCE

2. Object Lexeme

The Lexeme class is a literal object that is designed to hold a matching pattern. A
lexeme consists in string (i.e. the lexeme value), a tag and eventually a source name (i.e.
file name) and a source index (line number).

2.1. Predicate.

• lexeme-p

2.2. Inheritance.

• Literal

2.3. Constructors.

• Lexeme → (none)
The Lexeme constructor creates an empty lexeme.

• Lexeme → (String)
The Lexeme constructor creates a lexeme by value. The string argument is the
lexeme value.

2.4. Methods.

• set-tag → none (Integer)
The set-tag method sets the lexeme tag. The tag can be further used inside a
scanner.

• get-tag → Integer (none)
The get-tag method returns the lexeme tag.

• set-value → none (String)
The set-value method sets the lexeme value. The lexeme value is generally the
result of a matching operation.

• get-value → String (none)
The get-value method returns the lexeme value.

• set-index → none (Integer)
The set-index method sets the lexeme source index. The lexeme source index can
be for instance the source line number.

• get-index → Integer (none)
The get-index method returns the lexeme source index.

• set-source → none (String)
The set-source method sets the lexeme source name. The lexeme source name can
be for instance the source file name.

• get-source → String (none)
The get-source method returns the lexeme source name.

3. OBJECT SCANNER 209

3. Object Scanner

The Scanner class is a text scanner or lexical analyzer that operates on an input stream
and permits to match one or several patterns. The scanner is built by adding patterns to
the scanner object. With an input stream, the scanner object attempts to build a buffer
that match at least one pattern. When such matching occurs, a lexeme is built. When
building a lexeme, the pattern tag is used to mark the lexeme.

3.1. Predicate.

• scanner-p

3.2. Inheritance.

• Object

3.3. Constructors.

• Scanner → (none)
The Scanner constructor creates an empty scanner.

3.4. Methods.

• add → none (Pattern*)
The add method adds 0 or more pattern objects to the scanner. The priority of
the pattern is determined by the order in which the patterns are added.

• length → Integer (none)
The length method returns the number of pattern objects in this scanner.

• get → Pattern (Integer)
The get method returns a pattern object by index.

• check → Lexeme (String)
The check method checks that a string is matched by the scanner and returns the
associated lexeme.

• scan → Lexeme (InputStream)
The scan method scans an input stream until a pattern is matched. When a
matching occurs, the associated lexeme is returned.

210 20. STANDARD TEXT PROCESSING REFERENCE

4. Object Literate

The Literate class is transliteration mapping class. Transliteration is the process of
changing characters my mapping one to another one. The transliteration process operates
with a character source and produces a target character with the help of a mapping table.
This transliteration object can also operate with an escape table. In the presence of an
escape character, an escape mapping table is used instead of the regular one.

4.1. Predicate.

• literate-p

4.2. Inheritance.

• Object

4.3. Constructors.

• Literate → (none)
The Literate constructor creates a default transliteration object.

• Literate → (Character)
The Literate constructor creates a default transliteration object with an escape
character . The argument is the escape character.

4.4. Methods.

• read → Character (InputStream)
The read method reads a character from the input stream and translate it with
the help of the mapping table. A second character might be consumed from the
stream if the first character is an escape character.

• getu → Character (InputStream)
The getu method reads a Unicode character from the input stream and translate it
with the help of the mapping table. A second character might be consumed from
the stream if the first character is an escape character.

• reset → none (none)
The reset method resets all the mapping table and install a default identity one.

• set-map → none (Character Character)
The set-map method set the mapping table by using a source and target character.
The first character is the source character. The second character is the target
character.

• get-map → Character (Character)
The get-map method returns the mapping character by character. The source
character is the argument.

• translate → String (String)
The translate method translate a string by transliteration and returns a new string.

• set-escape → none (Character)
The set-escape method set the escape character.

• get-escape → Character (none)
The get-escape method returns the escape character.

• set-escape-map → none (Character Character)
The set-escape-map method set the escape mapping table by using a source and
target character. The first character is the source character. The second character
is the target character.

• get-escape-map → Character (Character)
The get-escape-map method returns the escape mapping character by character.
The source character is the argument.

4. OBJECT LITERATE 211

4.5. Functions.

• sort-ascent → none (Vector)
The sort-ascent function sorts in ascending order the vector argument. The vector
is sorted in place.

• sort-descent → none (Vector)
The sort-descent function sorts in descending order the vector argument. The
vector is sorted in place.

• sort-lexical → none (Vector)
The sort-lexical function sorts in lexicographic order the vector argument. The
vector is sorted in place.

CHAPTER 21

Standard XML Module

The Standard XML module is an original implementation of the XML markup language.
The module provides the necessary objects for parsing a xml description as well as manipu-
lating the parsed tree. The module can be extended to a service as a mean to act as a XML
processor. The module also provides the support for a simple model which enable the quick
parsing of documents with a relaxed rule checking approach.

1. XML tree representation

A xml document is represented with a tree. At the top of the tree is the XmlRoot object.
The root object is not part of the document, but acts as the primary container for other
objects. A xml document starts with a root node and all other child elements are XmlNode
objects.

1.1. Node base object. The xml tree is built with the XmlNode object. The node
object has different derivation depending on the required representation. For example, the
XmlRoot object is derived from the XmlNode object. A node object can have child object
unless the node is marked as an empty node . Trying to add node to an empty node results
in an exception. A node can also be marked empty by the user. This situation typically
arises with tag node which are used alone such like the
 xhtml empty tag or an empty
paragraph <p/> . Although a xml node cannot be constructed directly, there is a predicate
node-p that can be used to assert the node type.

1 # check a node
2 assert true (afnix:xml:node-p node)

The add-child method adds a child node to the calling node. If the calling node is
marked empty, an exception is raised when attempting to add the node. There is no limit
for the number of nodes to add. In particular, when a text is to be added, care should be
taken that there is no markup within that text. In doubt, the parse method should be used.

1 # parse a text and add 3 child nodes
2 p:parse "The quick brown fox
3 jumps over the lazy dog"

In the previous example, the first child node is a XmlText node with the value The quick
brown . The second node is a XmlTag node with name b . Finally, the third node is also
a XmlText node with the value jumps over the lazy dog . It should be noted that the tag
node has a child XmlText node with the value fox . This example also illustrates the power
of the parse method which considerably simplify the creation of a xml tree. Finally, there
is a subtle subject to be treated later which concerns the use of character reference with
the parse method. Like any other xml parser, character references are evaluated during the
parsing phase, thus providing no mechanism to create such reference. For this reason, a
special class called XmlCref is provided in the module.

213

214 21. STANDARD XML MODULE

1.2. Tag object. The XmlTag class is one of the most important class as it holds
most of the xml constructs. A tag is defined by a name, a set of attributes and eventually
a content. In its simplest form, a tag is created by name. With an additional boolean
parameter, the tag can be marked as an empty node.

1 # create an empty paragraph tag
2 const p (afnix:xml:XmlTag "p" true)

Adding attributes to a tag is imply a matter of method call. The add-attribute method
operates with a Property object while the set-attribute operates with a name and a literal
value. As a matter of fact, the attributes are stored internally as a property list.

1 # <p class="text">
2 # create a paragraph tag
3 const p (afnix:xml:XmlTag "p")
4 # set the class attribute
5 p:set-attribute "class" "text"

The node empty flag determines whether or not there is a end tag associated with a
tag. If the empty flag is false, the node can have children nodes and is associated with a
end tag. With the empty flag set, there is no child nodes. Such situation corresponds to
the xml /> notation.

1 #

2 # create a br empty tag
3 const br (afnix:xml:XmlTag "br" true)

1.3. Text objects. The xml module provides two types of xml text node. The basic
object is the XmlText node which is designed to hold some text without markup. It is this
kind of nodes which is automatically instantiated by the parse method, as described earlier.
The other object is the XmlData which corresponds to the xml CDATA special markup.
With a character data node, the characters are not interpreted, including those that indicate
markup starts like < or end like > . The XmlData is particularly used to store scripts or
other program text inside a xml description. As an example, it is recommended to use a
character data node inside a script tag with xhtml.

2. Document reading

A xml document is read by scanning an input stream an building a representation of
the xml tree.

2.1. The document object. The XmlDocument object is a special object is designed
to ease the reading process of an xml document. The process of creating a xml document
consists of creating a document object, then binding a xml reader, parsing the input stream
and finally storing the root node. When the operation is completed, the root node is available
in the document object.

1 # create a xml document
2 const xdoc (afnix:xml:XmlDocument "example.xml")
3 # get the root node
4 const rppt (xdoc:get-root)

2.2. The root node content. When a document is parsed, the root node holds all
the elements and markup sequentially. At this stage, it shall be noted that the element data
are not expanded. Unlike a normal XML reader, the parameter entity are kept in the node
data, are expended later by the XML processor.

3. NODE TREE OPERATIONS 215

3. Node tree operations

The class XneTree provides a single framework to operate on a node and its associated
tree. Since a node always carries a sub-tree, the node tree term will be used to reference it.

3.1. Creating a node tree. A node tree is created either from a node at construction
or with the help of the set-node method.

1 # create a node tree at construction
2 const tree (afnix:xml:XneTree root)
3 # change the node tree
4 tree:set-node node

Once a tree is created, various methods are provided to operate on the whole tree. The
depth method returns the depth of the node tree. The get-node methods returns the the
node associated with the tree.

1 # get the tree depth
2 println (tree:depth)

3.2. Namespace operations. The concept of namespace is an extension to the xml
standard. Unlike other programming language, the concept of namespace is designed to
establish a binding between a name and an uri. Such binding permits to establish a scope
for tags without too much burden. In the xml namespace terminology, an expanded name
is composed of a prefix and a local name . The basic operations provided at the tree level
is the prefix cancellation and the tree prefix setting.

1 # clear the prefix for the whole tree
2 tree:clear-prefix
3 # set a prefix for the whole tree
4 tree:set-prefix "afnix"

The set-prefix changes the prefix for the whole tree. It is not necessary to clear first the
prefix.

3.3. Attribute operations. Each node in the node tree can have its attribute list
modified in a single operation. The first operation is to clear all attributes for all nodes.
Although this operation might be useful, it should be carried with caution. The attributes
can also cleared more selectively by using the tag name as a filter. For more complex
operation, the clear-attribute method of the XmlTag is the definitive answer.

1 # clear all attributes
2 tree:clear-attribute
3 # clear all attributes by tag name
4 tree:clear-attribute "p"

The set-attribute method sets an attribute to the whole tree. The first argument is
the attribute name and the second is a literal value. For more selective operations, the
set-attribute method can be also called at the tag level.

1 # clear all attributes
2 tree:set-attribute "class" "text"

When it comes to set attributes, there is a special operation related to the ”id” attribute.
Such attribute is supposed to be unique for the whole tree. For this reason, the generate-id
generates a unique id for each node and assign the id attribute. The attribute is unique at
the time of the call. If the tree is modified, and in particular, if new node are added, the
method must be called again to regenerate the node id.

1 # set a unique id for all nodes
2 tree:generate-id

216 21. STANDARD XML MODULE

4. Node location and searching

The node location is the ability to locate one or several nodes in a xml tree. A node is
generally located by name, path or id. Once a node has been located, it can be processed.
Note that the node locator operates operates almost exclusively with XmlTag node, although
it might not be always the case.

4.1. Node selection. The process of finding a child node is obtained with the help
of the XneCond class combined with the select method of the XneTree Object. The select
method traverses the whole tree and attempts to match a condition for each node. If the
condition is evaluated successfully for a node, the node is added in the result vector. Note
that the tree can be traversed entirely or with only the first layer of children.

1 # creating a condition node
2 const xcnd (afnix:xml:XneCond)
3 # create a tree with a root node
4 const tree (afnix:xml:XneTree root)
5 # select all nodes for that condition
6 trans result (tree:select xcnd)

In the previous example, the condition object is empty. This means that there is no
condition, and thus works for all nodes. This previous example will return all nodes in the
tree.

4.2. Node condition. The XmlCond class provides several method to add a condi-
tions. The add method is the method of choice to add a condition. The method operates
with a condition type and a literal. Note that the object can contain several conditions.

1 # creating a condition node
2 const xcnd (afnix:xml:XneCond)
3 # add a condition by name
4 xcnd:add afnix:xml:xne:NAME "p"

In the previous example, a condition is designed to operate with a tag name. Upon a
call to the select method with this condition, all nodes in the tree that have the tag name
p will be selected.

1 # creating a condition node
2 const xcnd (afnix:xml:XneCond)
3 # add a condition by name
4 xcnd:add afnix:xml:xne:NAME "p"
5 # add an index condition
6 xcnd:add afnix:xml:xne:INDEX 0

In the previous example, a condition is designed to operate with a tag name and index.
Upon a call to the select method with this condition, all nodes in the tree that have the tag
name p and those child index is 0 will be selected.

4.3. Selection result. The node selection operates by default on the whole tree. The
select method, when called with a second boolean argument can restrict the search to the
child nodes.

1 # creating a condition node
2 const xcnd (afnix:xml:XneCond)
3 # create a tree with a root node
4 const tree (afnix:xml:XneTree root)
5 # select all nodes for that condition
6 trans result (tree:select xcnd false)

The selection results is stored in a vector object. The node order corresponds to the
tree order obtained with a depth first search approach.

5. SIMPLE MODEL NODE 217

5. Simple model node

The XML simple model is designed to simplify the interpretation of a general sgml
document such like, html or xhtml document. In the simple model approach, there is no
tree. Instead, a vector of simple nodes is built, and a document interface can be used to
access the nodes. Therefore, this simple model should be considered as a mean to quickly
parse document, but should not be used when tree operations come into play. In such case,
the xml model is by far more appropriate. The simple model can be used to parse a html
document for instance. Note also that the simple model is a relaxed model in terms of
parsing rules. For example, the tag start/end consistency is not checked and the attribute
parsing is not aggressive as it can be found generally in poorly written html document.

In the simple model, a XsmNode is just a text place holder. The node transports its
type which can be either text, tag, reference of end node. For the tag node, a subtype that
identifies reserved nodes versus normal type is also available.

5.1. Creating a node. A xsm node is created by name or byte and name. In the
first case, the node is a text node. In the second case, the node subtype is automatically
detected for tag node.

1 # create a xsm text node
2 const ntxt (afnix:xml:XsmNode "afnix">
3 # create a xsm tag node
4 const ntag (
5 afnix:xml:XsmNode afnix:xml:XsmNode:TAG "afnix">

Note that the text corresponds to the node content. For example, the string ”!– example
–” might corresponds to a comment in html which is to say a reserved tag when the type is
tag or a simple text if the type is a text node. A reserved tag is defined by a string which
start either with the ’ !’ character or the ’[’ character.

1 # create a reserved tag
2 const rtag (
3 afnix:xml:XsmNode afnix:xml:XsmNode:TAG
4 "!-- example --")

5.2. Node representation. The xsm node is a literal node. This means that the to-
string and to-literal methods are available. When the to-literal method is called, the node
text is automatically formatted to reflect the node type.

1 # create a reserved tag
2 const rtag (
3 afnix:xml:XsmNode afnix:xml:XsmNode:TAG
4 "!-- example --")
5 # print the node literal
6 rtag:to-literal # <!-- example -->

If the node is a reference node, the node literal is represented with the original definition
while the to-string method will produce the corresponding character if it known.

5.3. Node information. With a xsm node, the operation are a limited number of
node information operations. The get-name method returns the first name found in a node.
If the node is a normal tag, the get-name will return the tag name. For the other node, the
method will return the first available string. This also means, that the method will behave
correctly with end tag node.

1 # create a tag node
2 const ntag (
3 afnix:xml:XsmNode afnix:xml:XsmNode:TAG "afnix">
4 # get the tag name
5 ntag:get-name

218 21. STANDARD XML MODULE

There is a predicate for all types. For example, the text-p predicate returns true if the
node is a text node. The tag-p predicate returns true if the node is a normal or reserved
tag.

6. Document reading

A document is read in a way similar to the XmlDocument with the help of the Xsm-
Document object. Once created, the document holds a vector of nodes.

6.1. The document object. The XsmDocument object is a special xsm object de-
signed to ease the reading process of a document. The process of creating a document
consists of creating a document object, then binding a xsm reader, parsing the input stream
and storing the nodes in a vector. When the operation is completed, the vector can be
accessed by index.

1 # create a xms document
2 const xdoc (afnix:xml:XsmDocument "example.htm")
3 # get the document length
4 xdoc:length

6.2. Node information object. The XsoInfo object is a node information object
designed to hold a node name, an attributes list and eventually a text associated with the
node. For example, if a html document contains a anchor node, the associated information
node, will have the anchoring text stored as the node information text.

1 # create a xso node by name and text
2 const info (afnix:xml:XsoInfo "a" "click here")

6.3. Simple model operations. The XsmDocument is designed to perform simple
operations such like searching all nodes that matches a particular name. While this operation
can be done easily, it is done in such a way that a vector of node information is returned
instead of a vector of nodes which can always be constructed with a simple loop.

1 # create a xsm document
2 const xdoc (afnix:xml:XsmDocument "example.htm")
3 # get all node named "a" - forcing lower case
4 xdoc:get-info-vector "a" true

CHAPTER 22

Standard XML Reference

219

220 22. STANDARD XML REFERENCE

1. Object XmlNode

The XmlNode class is the base class used to represent the xml tree. The tree is built as
a vector of nodes. Each node owns as well its parent node. Walking in the tree is achieved
by taking the child node and then moving to the child and/or next node. The node also
manages an empty flags. It the empty flag is set, it is an error to add child nodes.

1.1. Predicate.

• node-p

1.2. Inheritance.

• Object

1.3. Methods.

• to-text → String (none)
The to-text method returns a text representation of the tree content. Unlike the
write method, the tag are not generated, but rather the text content is accumu-
lated. This method is useful tor read the node content. If a node does not have
text, the nil string is returned.

• write → none (none—OutputStream—Buffer)
The write method write the node contents as well as the child nodes to an output
stream argument or a buffer. When node is written, the method attempts to use
the stream encoding in such way that the contents fits into the requested output
encoding. Without argument, the node is written to the interpreter output stream.
with one argument, the node is written to the specified stream or buffer.

• name-p → Boolean (String)
The name-p predicate checks if the name matches the node name. Care should be
taken that not all node have a name, and in such case, the false value is returned.
This method is useful when the node is a tag.

• attribute-p → Boolean (String— String String)
The attribute-p predicate checks if there is a node attribute that matches the
string argument name. In the first form, the predicate returns true is an attribute
exists with the name argument. In the second form, the predicate returns true if
the attribute name and value matches the arguments. The first argument is the
attribute name. The second argument is the attribute value. Not all nodes have
attributes. In such case, the predicate always returns false.

• parse → none (String)
The parse method parses the string argument and adds the results as a set of child
node to the calling node. If the node is an empty node, the method will almost
fail. This method should be used when an attempt is made to add some text that
may contain some xml tags.

• get-parent → XmlNode (none)
The get-parent method returns the parent node. If the node is the root node, nil
is returned.

• set-parent → none (XmlNode)
The set-parent method sets the parent node.

• copy → XmlNode (none)
The copy method copy the node tree by regenerating a new tree.

• del-child → none (Integer — String — String String — String String String)
The del-child method deletes one or several child nodes. In the first form, the
children is deleted either by index or by name. When a string argument is used,
several node might be removed. In the second form, the child node name and

1. OBJECT XMLNODE 221

attribute name must be matched. In the third form, the child node name, attribute
name and value must be matched.

• del-attribute-child → none (String — String String)
The del-attribute-child method deletes one or several child nodes. In the first form,
the children are deleted by attribute name. In the second form, the children are
delete by attribute name and value.

• clear-child → none (none)
The clear-child method clear the child node list, leaving the node without child
node.

• add-child → none (XmlNode—XmlNode Integer)
The add-child method adds a node argument as a child node to the calling node.
In the first form, the node is added at the end of the node list. In the second form,
the node is added by index and all subsequent nodes are shifted by one position.

• get-child → XmlNode (Integer String)
The get-child method returns a child node by index or by name. If the calling
argument is an integer, the node is returned by index. If the calling argument is a
string, the node is returned by name. If the node cannot be found, nil is returned
raised.

• get-index → Integer (XmlNode)
The gett-index method returns a child node index. The node argument is the node
to find as a child node. If the node is not found, an exception is raised.

• merge → none (XmlNode Integer)
The merge method merge an existing node with another one. The first argument
is the source node used for merging. The second argument the child node index
to merge. The method operates by first removing the child node at the specified
index and then add in position, the child nodes of the source node.

• nil-child-p → Boolean (none)
The nil-child-p predicate returns true if the node does not have a child node.

• child-p → Boolean (String — String String — String String String)
The child-p predicate returns true if the node has a child with a node name argu-
ment. In the first form, the name is to be matched by the predicate. In the second
form, the node nae and the attribute name must be matched. In the third form,
the node name, attribute name and value must be matched.

• attribute-child-p → Boolean (String String — String String String)
The attribute-child-p predicate returns true if the node has a child with an attribute
name argument. In the first form, the attribute name must be matched. In the
second form, the attribute name and value must be matched.

• lookup-child → XmlNode (String)
The lookup-child method returns a child node by name. Unlike the get-child
method, the method raises an exception if the node cannot be found.

• child-length → Integer (none—String)
The child-length method returns the number of children nodes. In the first form,
without argument, the total number of children nodes is returned. In the second
form, the total number of nodes that match the tag argument name is returned.

• get-source-line → Integer (none)
The get-source-line method returns the node source line number if any.

• set-source-line → none (Integer)
The set-source-line method sets the node source line number.

• get-source-name → String (none)
The get-source-name method returns the node source name if any.

222 22. STANDARD XML REFERENCE

• set-source-name → none (String)
The set-source-name method sets the node source name.

2. OBJECT XMLTAG 223

2. Object XmlTag

The XmlTag class is the base class used to represent a xml tag. A tag is defined with a
name and an attribute list. The tag is derived from the xml node class and is not marked
empty by default.

2.1. Predicate.

• tag-p

2.2. Inheritance.

• XmlNode

2.3. Constructors.

• XmlTag → (String)
The XmlTag constructor creates a tag node. The node is not marked empty.

• XmlTag → (String Boolean)
The XmlTag constructor creates a tag node. The first argument is the tag name.
The second argument is the empty flag.

2.4. Methods.

• set-name → none (String)
The set-name method sets the tag name.

• get-name → String (none)
The get-name method returns the tag name.

• clear-attribute → none (node)
The clear-attribute method clear the node attribute list.

• add-attribute → none (Property)
The add-attribute method adds a new attribute to the tag. The attribute must be
new for this method to succeed. In doubt, the set-attribute is preferable.

• set-attribute → none (String Literal)
The set-attribute method sets an attribute to the tag. The first argument is the
attribute name. The second argument is the attribute value. If the attribute
already exists, the old value is replaced with the new one.

• get-attribute → Property (Integer—String)
The get-attribute method returns a tag attribute in the form o a property object.
With an integer object, the attribute is returned by index. With a string object,
the property is return by name. If the property is not found, nil is returned.

• get-attribute-value → String (String)
The get-attribute-value method returns a tag attribute value by name. The string
argument is the attribute name. If the property is not found, an exception is
raised.

• lookup-attribute → Property (String)
The lookup-attribute method returns a tag attribute by name in the form of a
property. The string argument is the attribute name. If the property is not found,
an exception is raised.

• attribute-length → Integer (none)
The attribute-length method returns the number of attributes.

224 22. STANDARD XML REFERENCE

3. Object XmlText

The XmlText class is the xml text node. A text node is directly built by the xml reader
and the content placed into a string. By definition, a text node is an empty node.

3.1. Predicate.

• text-p

3.2. Inheritance.

• XmlNode

3.3. Constructors.

• XmlText → (none)
The XmlText constructor creates a default text node. By definition, a text node
is an empty node.

• XmlText → (String)
The XmlText constructor creates a text node with the string argument.

3.4. Methods.

• set-xval → none (String)
The set-xval method sets the text node value.

• get-xval → String (none)
The get-xval method returns the text node value.

• to-normal → String (none)
The to-normal method returns the normalized text node value.

4. OBJECT XMLDATA 225

4. Object XmlData

The XmlData class is the xml CDATA node. A data node differs from the text node in
the sense that the data node contains characters that could be reserved characters such like
markup delimiters. The data node is most of the time used to hold text used for scripting.
The data node is an empty node.

4.1. Predicate.

• data-p

4.2. Inheritance.

• XmlNode

4.3. Constructors.

• XmlData → (none)
The XmlData constructor creates a default data node. By definition, a data node
is an empty node.

• XmlData → (String)
The XmlData constructor creates a data node with the string argument.

4.4. Methods.

• set-xval → none (String)
The set-xval method sets the data node value.

• get-xval → String (none)
The get-xval method returns the data node value.

226 22. STANDARD XML REFERENCE

5. Object XmlComment

The XmlComment class is the xml comment node. The comment node is a special node
that holds the comment text. The comment node is an empty node.

5.1. Predicate.

• comment-p

5.2. Inheritance.

• XmlNode

5.3. Constructors.

• XmlComment → (none)
The XmlComment constructor creates a default comment node. By definition, a
comment node is an empty node.

• XmlComment → (String)
The XmlComment constructor creates a comment node with the string argument.

5.4. Methods.

• set-xval → none (String)
The set-xval method sets the comment node value.

• get-xval → String (none)
The get-xval method returns the comment node value.

6. OBJECT XMLDOCTYPE 227

6. Object XmlDoctype

The XmlDoctype class is the xml document type node. In its simplest form, the doc-
ument type has just a name which acts the starting tag for the document. The document
type can also be associated with a system or a public identifier. Note also that a local root
node can be attached to this node.

6.1. Predicate.

• doctype-p

6.2. Inheritance.

• XmlNode

6.3. Constructors.

• XmlDoctype → (String)
The XmlDoctype constructor creates a document type with a starting tag name as
the string argument. This is the simplest form of a document type definition.

• XmlDoctype → (String String)
The XmlDoctype constructor creates a document type with a starting tag name
and a system identifier. The first string argument is the tag name. The second
argument is the system identifier.

• XmlDoctype → (String String String)
The XmlDoctype constructor creates a document type with a starting tag name, a
public and a system identifier. The first string argument is the tag name. The sec-
ond argument is the public identifier. The third argument is the system identifier.

6.4. Methods.

• get-xval → String (none)
The get-xval method returns the document type starting tag name.

• get-public-id → String (none)
The get-public-id method returns the document type public identifier.

• get-system-id → String (none)
The get-system-id method returns the document type system identifier.

228 22. STANDARD XML REFERENCE

7. Object XmlPi

The XmlPi class is the xml processing node. The processing node is a tag node. Al-
though a processing node is seen as tag with attributes, the specification describes the
processing node as a special tag with a string value. The processing node is an empty node.

7.1. Predicate.

• pi-p

7.2. Inheritance.

• XmlNode

7.3. Constructors.

• XmlPi → (String)
The XmlPi constructor creates a processing node with the name string argument.

• XmlPi → (String String)
The XmlPi constructor creates a processing node with the name string argument
and the string value. The first argument is the tag name. The second argument is
the processing node value.

7.4. Methods.

• set-name → none (String)
The set-name method sets the xml pi node name.

• get-name → String (none)
The get-name method returns the pi node name.

• set-xval → none (String)
The set-xval method sets the processing node value.

• get-xval → String (none)
The get-xval method returns the processing node value.

• map-xval → Plist (String)
The map-xval method map the processing node value to a property list.

8. OBJECT XMLDECL 229

8. Object XmlDecl

The XmlDecl class is the xml declaration node. The declaration node is a processing
node. A declaration node is defined with a version id, an encoding string and a standalone
flag. Each value is represented by an attribute at the tag level.

8.1. Predicate.

• decl-p

8.2. Inheritance.

• XmlPi

8.3. Constructors.

• XmlDecl → (none)
The XmlDecl constructor creates a default declaration node. By default, the decla-
ration node is set with the xml version 1.0, the UTF-8 encoding and the standalone
flag is not set.

• XmlDecl → (String)
The XmlDecl constructor creates a declaration node with a version. The string
argument is the xml version version which must be a supported one.

• XmlDecl → (String String)
The XmlDecl constructor creates a declaration node with a version and an encod-
ing. The string argument is the xml version version which must be a supported
one. The second argument is the xml encoding.

• XmlDecl → (String String String)
The XmlDecl constructor creates a declaration node with a version, an encoding
and a standalone flag. The string argument is the xml version version which must
be a supported one. The second argument is the xml encoding. The third argument
is the standalone flag.

230 22. STANDARD XML REFERENCE

9. Object XmlRef

The XmlRef class is the xml reference node class. This class is a base class which cannot
be instantiated directly. The class is designed to hold reference, the only element which is
in common is the string representation.

9.1. Predicate.

• ref-p

9.2. Inheritance.

• XmlNode

9.3. Methods.

• set-xref → none (String)
The set-xref method sets the node reference name.

• get-xref → String (none)
The get-xref method returns the node reference name.

10. OBJECT XMLCREF 231

10. Object XmlCref

The XmlCref class is the xml character reference node class. Normally this class should
only be used when building a xml tree manually. During a parsing process, the character
reference is automatically expanded.

10.1. Predicate.

• cref-p

10.2. Inheritance.

• XmlRef

10.3. Constructors.

• XmlCref → (none)
The XmlCref constructor creates a default character reference those value is the
null character.

• XmlCref → (Character—Integer)
The XmlCref constructor creates a character reference those value is the character
or integer argument.

10.4. Methods.

• set-value → none (Character—Integer)
The set-value method sets the character reference value by character or integer.

• get-value → Character (none)
The get-value method returns the character reference value.

232 22. STANDARD XML REFERENCE

11. Object XmlEref

The XmlEref class is the xml entity reference node class. The entity reference is defined
with a reference name.

11.1. Predicate.

• eref-p

11.2. Inheritance.

• XmlRef

11.3. Constructors.

• XmlEref → (none)
The XmlCref constructor creates an empty entity reference.

• XmlCref → (String)
The XmlEref constructor creates an entity reference those value is the string ar-
gument.

12. OBJECT XMLSECTION 233

12. Object XmlSection

The XmlSection class is the xml section type node. A section node is used to model
conditional section that are part of a DTD. The section value is a string that is evaluated by
the xml processor. Most of the time, it is a parameter entity reference which corresponds to
the keyword INCLUDE or IGNORE , but it could be anything else. A node is also attached
to this section.

12.1. Predicate.

• section-p

12.2. Inheritance.

• xmlNode

12.3. Constructors.

• XmlSection → (String)
The XmlSection constructor creates a xml section node by value.

12.4. Methods.

• get-xval → String (none)
The get-xval method returns the section node value.

234 22. STANDARD XML REFERENCE

13. Object XmlAttlist

The XmlAttlist class is the xml attribute list node class. A xml attribute list is pri-
marily defined with two names. The first name is the element and the second name is the
attribute name. There are 3 types of attribute list. The string type, the token type and the
enumeration type. The class manages each type by associating a type descriptor which is
detected at construction.

13.1. Predicate.

• attlist-p

13.2. Inheritance.

• XmlNode

13.3. Constructors.

• XmlAttlist → (String String)
The XmlAttlist constructor creates an attribute list by element name and attribute
name. The first argument is the element name. The second argument is the
attribute name.

13.4. Methods.

• set-element-name → none (String)
The set-element-name method sets the attribute list element name.

• get-element-name → String (none)
The get-element-name method returns the attribute list element name.

• set-attribute-name → none (String)
The set-attribute-name method sets the attribute list name.

• get-attribute-name → String (none)
The get-attribute-name method returns the attribute list name.

• set-type → none (String — Vector Boolean)
The set-type method set the attribute type by string or enumeration vector. In
its first form, the attribute type is defined by a string. The type can be ei-
ther, ”CDATA”, ”ID”, ”IDREF”, ”IDREFS”, ”ENTITY”, ”ENTITIES”, ”NM-
TOKEN” or ”NMTOKENS”. In the second form, the attribute type is an enu-
meration those values are defined in the argument vector. The boolean argument
controls the notation flag for that enumeration.

• set-default → none (String)
The set-default method set the attribute value by string. The string can be any
value or the special value ”#IMPLIED” and ”#REQUIRED”. If the default value
is fixed, the set-fixed is the preferred method.

• set-fixed → none (String)
The set-fixed method set the fixed attribute default value by string.

14. OBJECT XMLROOT 235

14. Object XmlRoot

The XmlRoot class is the top level root instantiated by the xml reader when starting to
parse a stream. There should be only one root node in a tree. The root node does not have
a parent node.

14.1. Predicate.

• root-p

14.2. Inheritance.

• XmlNode

14.3. Constructors.

• XmlRoot → (none)
The XmlRoot constructor creates a default xml root node which is empty.

14.4. Methods.

• dup-body → XmlBody (none)
The dup-body method duplicates the root node by duplicating the root body with-
out the declaration node.

• declaration-p → Boolean (none)
The declaration-p predicate returns true if a declaration node exists in the root
node.

• get-declaration → XmlDecl (none)
The get-declaration method returns the declaration node associated with the root
node. Normally, the declaration node is the first child node. If the declaration
node does not exist, an exception is raised.

• get-encoding → String (none)
The get-encoding method returns the root encoding mode. The root encoding
mode is extracted from the declaration node, if such node exists, or the default
xml system encoding is returned.

236 22. STANDARD XML REFERENCE

15. Object XmlDocument

The XmlDocument class is the xml document class. The document class is the root
document class that maintains a xml document along with its associated tree and other
useful information. Generally the class is constructed with a file name or a name and an
input stream that is used for parsing the input data. The document can also be designed
by constructing manually the document tree. In that case, the document name must be set
explicitly.

15.1. Predicate.

• document-p

15.2. Inheritance.

• Nameable

15.3. Constructors.

• XmlDocument → (none)
The XmlDocument constructor creates a default xml document.

• XmlDocument → (String)
The XmlDocument constructor creates a xml document by parsing the file. The
file name is the string argument.

• XmlDocument → (String InputStream)
The XmlDocument constructor creates a xml document by name and by parsing
the input stream. The first argument is the xml document name. The second
argument is the input stream to parse.

• XmlDocument → (String XmlRoot)
The XmlDocument constructor creates a xml document by name and root node.
The first argument is the xml document name. The second argument is the xml
root node.

15.4. Methods.

• set-name → none (String)
The set-name method sets the xml document name. The get-name method is
available from the nameable base class.

• get-root → XmlRoot (none)
The get-root method returns the document xml root node.

• get-body → XmlRoot (none)
The get-body method returns the document xml root node body without the dec-
laration node.

16. OBJECT XMLELEMENT 237

16. Object XmlElement

The XmlElement class is the xml element class node. A xml element is represented with
a name and a value. It is during the processing phase that the element value is interpreted.
An element is built with a name and a value.

16.1. Predicate.

• element-p

16.2. Inheritance.

• XmlNode

16.3. Constructors.

• XmlElement → (String String)
The XmlElement constructor creates a xml element by name and value. The first
argument is the element name. The second argument is the argument value.

16.4. Methods.

• set-name → none (String)
The set-name method sets the xml element name.

• get-name → String (none)
The get-name method returns the element name.

• set-xval → none (String)
The set-xval method sets the xml element value.

• get-xval → String (none)
The get-xval method returns the element value.

238 22. STANDARD XML REFERENCE

17. Object XmlEntity

The XmlEntity class is the base class for the xml entity representation. A xml entity
can be either a general entity or a parameter entity. They differ initially with the presence
of the ’%’ character. Both entity model have a name which is path of the base class.

17.1. Predicate.

• entity-p

17.2. Inheritance.

• XmlNode

17.3. Methods.

• set-name → none (String)
The set-name method sets the entity name.

• get-name → String (none)
The get-name method returns the entity name.

18. OBJECT XMLGE 239

18. Object XmlGe

The XmlGe class is the xml general entity node. In its simplest form, the general entity
has a name and a value. The entity type can also be associated with a system or a public
identifier with or without an extra type name.

18.1. Predicate.

• ge-p

18.2. Inheritance.

• XmlEntity

18.3. Constructors.

• XmlGe → (String String)
The XmlGe constructor creates a xml entity by name and value. The first argu-
ment is the entity name. The second argument is the entity value. Most of the
time, the entity value is a parameter entity.

• XmlGe → (String String String)
The XmlGe constructor creates a xml entity by name and identifier. The first
argument is the entity name. The second argument is the entity public identifier.
The third argument is the entity system identifier.

• XmlGe → (String String String String)
The XmlGe constructor creates a xml entity by name, identifier and data type.
The first argument is the entity name. The second argument is the entity public
identifier. the third argument is the entity system identifier. The fourth argument
is the entity type name.

18.4. Methods.

• get-xval → String (none)
The get-xval method returns the entity value.

• get-data → String (none)
The get-data method returns the entity data type.

• get-public-id → String (none)
The get-public-id method returns the entity public identifier.

• get-system-id → String (none)
The get-system-id method returns the entity system identifier.

240 22. STANDARD XML REFERENCE

19. Object XmlPe

The XmlPe class is the xml parameter entity node. In its simplest form, the parameter
entity has a name and a value. The entity type can also be associated with a system or a
public identifier.

19.1. Predicate.

• ge-p

19.2. Inheritance.

• XmlEntity

19.3. Constructors.

• XmlPe → (String String)
The XmlGe constructor creates a xml entity by name and value. The first argu-
ment is the entity name. The second argument is the entity value.

• XmlPe → (String String String)
The XmlGe constructor creates a xml entity by name and identifier. The first
argument is the entity name. The second argument is the entity public identifier.
The third argument is the entity system identifier.

19.4. Methods.

• get-xval → String (none)
The get-xval method returns the entity value.

• get-public-id → String (none)
The get-public-id method returns the entity public identifier.

• get-system-id → String (none)
The get-system-id method returns the entity system identifier.

20. OBJECT XMLREADER 241

20. Object XmlReader

The XmlReader class is the xml parser that operates on an input stream. The reader
creates a tree of nodes by reading the input stream and returns the root node when an
end-of-stream is reached. Multiple read can be done sequentially. If the reset method is not
called between multiple read passes, the reader will accumulate the nodes in the current
tree.

20.1. Predicate.

• reader-p

20.2. Inheritance.

• Object

20.3. Constructors.

• XmlReader → (none)
The XmlReader constructor creates a default xml reader.

20.4. Methods.

• reset → none (none)
The reset method resets the xml reader. In particular, the root node is restored
to the nil node.

• parse → none (InputStream—String)
The parse method parses an input stream or a file. During the parsing process,
the root node is filled with the parsed nodes.

• get-root → XmlRoot (none)
The get-root method returns the parsed root node.

• get-node → XmlNode (String)
The get-node method parse a string and returns a node.

242 22. STANDARD XML REFERENCE

21. Object Xne

The Xne is a nameset that binds constants used by the xne system.

21.1. Constants.

• ID → ()
The ID constant defines a node access by id.

• PI → ()
The PI constant defines an access selector for a processing instruction node.

• GE → ()
The GE constant defines an access selector for a general entity node.

• TAG → ()
The TAG constant defines an access selector for a tag node.

• ENT → ()
The ENT constant defines an access selector for an entity node.

• EREF → ()
The EREF constant defines an access selector for an entity reference node.

• CREF → ()
The CREF constant defines an access selector for an character reference node.

• ELEM → ()
The ELEM constant defines an access selector for an element node.

• TEXT → ()
The TEXT constant defines an access selector for a text node.

• NAME → ()
The NAME constant defines a node access by name.

• CDATA → ()
The CDATA constant defines an access selector for a character data node.

• INDEX → ()
The INDEX constant defines a node access by child index. The child index is node
index seen from the parent.

22. OBJECT XNETREE 243

22. Object XneTree

The XneTree is the xne node tree manipulation class. The class operates with a node
and provides numerous methods to manipulate the tree as well as changing it. Before a tree
is manipulated, it is recommended to make a copy of such tree with the help of the node
copy method.

22.1. Predicate.

• xne-tree-p

22.2. Inheritance.

• Object

22.3. Constructors.

• XmlTree → (none)
The XmlTree constructor creates a default tree without a node.

• XmlTree → (XmlNode)
The XmlTree constructor creates a tree with a xml node. The node stored in the
object is the root of the tree subject to the operations.

22.4. Methods.

• depth → Integer (none)
The depth method returns the depth of the tree.

• generate-id → Integer (none)
The generate-id method generate a unique id for all node in the tree. The id
attribute is set by this method.

• set-node → none (XmlNode)
The set-node method sets the root tree node.

• get-node → XmlNode (none)
The get-node method returns the root tree node.

• set-attribute → none (none—String)
The set-attribute method sets an attribute to the whole tree. In the first form, the
attribute is set to the whole tree. In the second form with a string argument, the
attribute is set only on the tag node those name matches the name argument.

• clear-attribute → none (none—String)
The clear-attribute method clear all attributes of the nodes in the tree. In the first
form, the node attributes are cleared for all nodes in the tree. In the second form
with a string argument, the attributes are cleared only with the tag node those
name matches the name argument.

• set-prefix → none (String)
The set-prefix method sets a prefix on all nodes in the tree.

• clear-prefix → none (none)
The clear-prefix method clear the prefix for all nodes in the tree.

• select → Vector (XneCond [Boolean])
The select method selects the node in the tree that matches the condition argu-
ment. In the first form, with one argument, the whole tree is searched. In the
second form, with a boolean argument, the whole tree is searched if the second
argument is false. If the boolean argument is true, the method call behaves like a
call with the condition only.

244 22. STANDARD XML REFERENCE

23. Object XneChild

The XneCond is the xne condition class. The sole purpose of this class is to define one
or several condition that a node must satisfy in order to be selected. The condition are
accumulated in a list and later checked for a particular node. Note that an empty condition
always succeeds.

23.1. Predicate.

• xne-cond-p

23.2. Inheritance.

• Object

23.3. Constructors.

• XneCond → (none)
The XneCond constructor creates a default condition. The default condition is
empty. The empty condition always succeeds.

23.4. Methods.

• add → none (Xne [String—Integer])
The add adds a condition by type. The first argument is the condition type. The
second argument is a condition information such like a string or an integer.

• valid-p → Boolean (XmlNode)
The valid-p predicate checks that a node matches a condition. If the condition
succeeds, the predicate returns true.

24. OBJECT XSMNODE 245

24. Object XsmNode

The XsmNode is a base class which is part of the xml simple model (xsm). In this
model, a xml (or sgml, or html) text is represented by a node which can be either a tag,
a text or a reference node. There is no concept of tree. The node content is stored in the
form of a text string. This simple model is designed to parse weak data representation such
like html text and later process it at the user discretion. The default representation is an
empty text node.

24.1. Predicate.

• xsm-node-p

24.2. Inheritance.

• Object

24.3. Constants.

• TXT → ()
The TXT constant defines a xsm text node.

• TAG → ()
The TAG constant defines a xsm tag node.

• REF → ()
The REF constant defines a xsm reference node.

• END → ()
The END constant defines a xsm end node.

24.4. Constructors.

• XsmNode → (none)
The XsmNode constructor creates a default xsm node which is an empty text node.

• XsmNode → (String)
The XsmNode constructor creates a xsm text node by value. The string argument
is the text node value

• XsmNode → (Item String)
The XsmNode constructor creates a xsm text node by type and value. The first
argument is the node type. The second argument is the node text value.

24.5. Methods.

• text-p → Boolean (none)
The text-p predicate returns true if the node is a text node.

• tag-p → Boolean (none)
The tag-p predicate returns true if the node is a tag node.

• ref-p → Boolean (none)
The reference-p predicate returns true if the node is a reference node.

• end-p → Boolean (none)
The end-p predicate returns true if the node is a reference node.

• normal-p → Boolean (none)
The normal-p predicate returns true if the node is a normal tag node.

• reserved-p → Boolean (none)
The reserved-p predicate returns true if the node is a reserved tag node.

• textable-p → Boolean (none)
The textable-p predicate returns true if the node is a textable node, that is a text
node or a reference node.

246 22. STANDARD XML REFERENCE

• get-source-line → Integer (none)
The get-source-line method returns the node source line number if any.

• set-source-line → none (Integer)
The set-source-line method sets the node source line number.

• get-source-name → String (none)
The get-source-name method returns the node source name if any.

• set-source-name → none (String)
The set-source-name method sets the node source name.

• get-name → String (none)
The get-name method returns the next available name. name.

25. OBJECT XSMREADER 247

25. Object XsmReader

The XmlReader class is the simple model node reader. The reader operates with the
parse method and returns a node or nil if the end of stream is reached. Unlike the xml
reader, this reader does not build a tree and the node content is not even parsed. In this
model, the node content is to be interpreted at the user discretion.

25.1. Predicate.

• xsm-reader-p

25.2. Inheritance.

• Object

25.3. Constructors.

• XsmReader → (none)
The XsmReader constructor creates a default xsm reader. The reader is not bound
to any stream.

• XsmReader → (InputStream)
The XsmReader constructor creates a xsm reader with an input stream. The
argument is the input bound to the reader.

• XsmReader → (String)
The XsmReader constructor creates a xsm reader with an input string stream.
The argument is a string which is used to create an input string stream bound to
the reader.

25.4. Methods.

• set-input-stream → none (InputStream)
The set-input-stream method bind a new input stream to the reader. Subsequent
read will use the newly bound stream

• get-node → XsmNode (none)
The get-node method parses the input stream and returns the available node.

248 22. STANDARD XML REFERENCE

26. Object XsmDocument

The XsmDocument class is the document class that maintains a xsm document along
with its associated list of nodes and other useful information. Generally the class is con-
structed with a file name or a name and an input stream that is used for parsing the input
data. When the input stream has been parsed, the nodes are stored in a vector which can
be access by index.

26.1. Predicate.

• document-p

26.2. Inheritance.

• Nameable

26.3. Constructors.

• XsmDocument → (none)
The XsmDocument constructor creates a default xsm document.

• XsmDocument → (String)
The XsmDocument constructor creates a xsm document by name. The string
argument is the file name to parse.

• XsmDocument → (String InputStream)
The XsmDocument constructor creates a xsm document by name and by parsing
the input stream. The first argument is the xsm document name. The second
argument is the input stream to parse.

26.4. Methods.

• set-name → none (String)
The set-name method sets the xsm document name. The get-name method is
available from the nameable base class.

• length → Integer (none)
The length method returns the xsm document length. The document length is the
number of nodes parsed and stored in the document.

• get-node → XsmNode (Integer)
The get-node method returns a document node by index.

• get-info → XsoInfo (Integer [Boolean])
The get-info method returns a node info object by index. The info object is
evaluated dynamically from the document node. In the first form, the node name
is used to find the node end tag in order to construct the info text value. In the
second form, the boolean argument, if true, forces the node name to be converted
to lower case prior any comparison.

• get-info-vector → XsoInfo (String [Boolean])
The get-info-vetcor method returns an info object vector by name. Each info object
have their name that matches the string argument. The info object is evaluated
dynamically from the document node. In the first form, the node name is used to
match a tag node and then find the node end tag in order to construct the info text
value. In the second form, the boolean argument, if true, forces the node name to
be converted to lower case prior any comparison.

27. OBJECT XSOINFO 249

27. Object XsoInfo

The XsoInfo class is a xml/xsm information node used to carry simple information
about a tag. The node is constructed by name, with a set of attributes and eventually a
text associated with the node. The text information is generally the one associated between
the start tag and the end tag. In the case of complex tree, such text data might be empty.

27.1. Predicate.

• xso-info-p

27.2. Inheritance.

• Nameable

27.3. Constructors.

• XsoInfo → (none)
The XsoInfo constructor creates a default info object.

• XsoInfo → (String)
The XsoInfo constructor creates an info object by name. The string argument is
the node info name.

• XsoInfo → (String String)
The XsoInfo constructor creates an info object by name and text. The first argu-
ment is the node info name. The second argument is the node text information.

27.4. Methods.

• set-name → none (String)
The set-name method sets the info object name.

• set-attribute → none (String Literal)
The set-attribute method sets an attribute by name and value. The first argument
is the attribute name. The second argument is the attribute value.

• get-attribute-list → Plist (none)
The get-attribute-list method returns the node attribute list in the form of a prop-
erty list object.

• get-attribute-value → String (String)
The get-attribute-value method returns the attribute value by name. The string
argument is the attribute name.

• set-text → none (String)
The set-text method sets the info object text.

• get-text → String (none)
The get-text method returns the text information.

Part 2

Services

CHAPTER 23

Standard Content Session Management Service

The Standard Content Session Management service is an original implementation of var-
ious objects dedicated to the management of sessions, realms, identities and more generaly
with data concentration in the form of binary blobs.

1. General concepts

The afnix-csm provides the support for manipulating content session in an ecclectic
form. There are multiple types of objects which can broadly be categorized into general
data management in the form of data blobs, identity and credential management and finally
session management.

1.1. Blob. The concept of blob is central in the csm service. A blob is a registrable
part. A part is an abstract taggable object uniquely identified by a uuid. The blob adds a
registration identification, which enables them to be group into domains.

253

CHAPTER 24

Standard Content Session Management Reference

255

256 24. STANDARD CONTENT SESSION MANAGEMENT REFERENCE

1. Object Part

The Part class is a taggable object which is bound by a unique key and provide a plist
interface access. The part object is the foundation of the blob object and is also used to
feed a collection. The key is represented by a uuid object.

1.1. Predicate.

• part-p

1.2. Inheritance.

• Taggable

1.3. Constructors.

• Part → (none)
The Part constructor creates an empty part

• Part → (String)
The Part constructor creates a part by name.

• Part → (String String)
The Part constructor creates a part by name and info strings.

1.4. Methods.

• kid-p → Boolean (String)
The kip-p predicate returns true if the part kid can be validated.

• property-p → Boolean (String)
The property-p predicate returns true if the property name argument is defined in
the part.

• get-kid → Uuid (none)
The get-kid method returns the part kid.

• add → none (String Literal)
The add method adds a property to the part.

• get-header → Plist (none)
The get-header method returns the part header which is a plist with the part name,
info and uuid.

• get-plist → Plist (none)
The get-plist method returns the part plist.

• get-value → String (String)
The get-value method returns the a part property value by name.

• to-lteral → Literal (String)
The toliteral method returns the a part property literal by name.

2. OBJECT BLOB 257

2. Object Blob

The Blob class is a base class that models the behavior of a registered blob through the
use of a registration id. The blob is registered as soon as its registration id is set. If the
registration id is unset, the object is unregistered or anonymous. The registration id can
be anything as long as as it is understood by the implementation that such registration is
to be interpreted somewhere else. The blob is also a part which means that it has a name,
info and unique key.

2.1. Predicate.

• blob-p

2.2. Inheritance.

• Part

2.3. Constructors.

• Blob → (none)
The Blob constructor creates an empty blob.

• Blob → (String)
The Blob constructor creates a blob by name.

• Blob → (String String)
The Blob constructor creates a blob by name and info strings.

• Blob → (String String String)
The Blob constructor creates a blob by rid, name and info strings.

2.4. Methods.

• rid-p → Boolean (none)
The rid-p predicate returns true if the blob registration id is set.

• set-rid → none (String)
The set-rid method sets the blob rid.

• get-rid → String (none)
The get-rid method returns the blob rid.

258 24. STANDARD CONTENT SESSION MANAGEMENT REFERENCE

3. Object Bloc

The Bloc class is a derived class which encapsulates the functionality of a blob coupled
with a plist and a table of conditionals.

3.1. Predicate.

• bloc-p

3.2. Inheritance.

• Blob

3.3. Constructors.

• Bloc → (none)
The Bloc constructor creates an empty bloc.

• Bloc → (String)
The Bloc constructor creates a bloc by name.

• Bloc → (String String)
The Bloc constructor creates a bloc by name and info strings.

• Bloc → (String String String)
The Bloc constructor creates a bloc by rid, name and info strings.

3.4. Methods.

• add-credential → none (Credential)
The add-credential method add a credential to the bloc.

• get-credential → Credential (String)
The get-credential method returns a credential object by name.

4. OBJECT CARRIER 259

4. Object Carrier

The Carrier class is a blob used to transport an object. The object transported by the
carrier must be serializable.

4.1. Predicate.

• carrier-p

4.2. Inheritance.

• Blob

4.3. Constructors.

• Carrier → (none)
The Carrier constructor creates an empty carrier.

• Carrier → (Object)
The Carrier constructor creates a carrier with an object.

• Carrier → (Object String)
The Carrier constructor creates a carrier with an object by name.

• Carrier → (Object String String)
The Carrier constructor creates a carrier with an object by name and info strings.

• Carrier → (Carrier String String String)
The Carrier constructor creates a carrier with an object by rid, name and info
strings.

4.4. Methods.

• get-object → Object (none)
The get-object method returns the carrier object.

260 24. STANDARD CONTENT SESSION MANAGEMENT REFERENCE

5. Object Delegate

The Delegate class is a carrier blob which delegates its transport to another object.
Such approach is used when the carried object needs to remains locally (aka it cannot be
serialized) but a reference to it can be sent to the remote peer.

5.1. Predicate.

• delegate-p

5.2. Inheritance.

• Carrier

5.3. Constructors.

• Delegate → (none)
The Delegate constructor creates an empty delegate.

• Delegate → (Object)
The Delegate constructor creates a delegate with an object.

• Delegate → (Object String)
The Delegate constructor creates a delegate with an object by name.

• Delegate → (Object String String)
The Delegate constructor creates a delegate with an object by name and info
strings.

• Delegate → (Delegate String String String)
The Delegate constructor creates a delegate with an object by rid, name and info
strings.

• Delegate → (Delegate String String String String)
The Delegate constructor creates a delegate with an object by rid, name, info
strings and delegation address.

5.4. Methods.

• set-address → none (String)
The set-address method sets the delegate address.

• get-address → String (none)
The get-address method returns the delegate address.

6. OBJECT REALM 261

6. Object Realm

The Realm class is an abstract class design for the storage and management of author-
ities. The class provides the basic methods to create, check and validate an authority.

6.1. Predicate.

• realm-p

6.2. Inheritance.

• Nameable

6.3. Methods.

• exists-p → Boolean (String)
The exists-p predicate checks if an authority exists by kid.

• valid-p → Boolean (String Credential)
The valid-p predicate validates an authority by name and credential.

• get-info → String (none)
The get-info-p method the real information string. Note that the get-name method
is also available through the Nameable interface.

• create → none (String Credential)
The create method creates an authority by name and credential.

• update → none (Authority)
The update method updates a workzone by authority.

262 24. STANDARD CONTENT SESSION MANAGEMENT REFERENCE

7. Object Session

The Session class is a class that defines a session to be associated with a transaction.
The session object is designed to be persistent so that its data information can be retreived
at any time. A session object has also the particularity to have a limited lifetime. A session
object is created by name with an identifier. The session object is designed to hold a variety
of parameters that are suitable for both the authentication and the session lifetime. A
session is primarily defined by name with an optional information string. The session is
generally associated an authentication visa which contains the session identity. The visa
provides a secure mechanism compatible with a single sign on session. A session key is
automatically generated when the session is created. Such key is used to generate a session
hash id which can be used as a cookie value. The cookie name is also stored in the session
object. When a cookie is generated, the session hash name is combined with the session
hash id for the cookie production.

7.1. Predicate.

• session-p

7.2. Inheritance.

• Taggable

7.3. Constructors.

• Session → (String)
The Session constructor creates a session by name. The string argument is the
session name.

• Session → (String String)
The Session constructor creates a session with a name and a user. The first
argument is the session name. The second argument is the session information..

• Session → (String String Integer)
The Session constructor creates a session with a name, a user and a maximum age.
The first argument is the session name. The second argument is the session infor-
martion. The third argument is the session maximum age expressed in seconds.

7.4. Methods.

• expire-p → Boolean (none)
The expire-p predicate returns true if the session has expired.

• set-hash-id → none (String)
The set-hash-id method sets the session hash identifier. The session hash id must
be unique and secured enough so that the session name cannot be derived from it.

• get-hash-id → String (none)
The get-hash-id method returns the session hash identifier.

• set-path → none (String)
The set-path method sets the session path.

• get-path → String (none)
The get-path method returns the session path.

• get-max-age → Integer (none)
The get-max-age method returns the session maximum age.

• set-max-age → none (Integer)
The set-max-age method sets the session maximum age. The maximum age is an
integer in seconds relative to the current time. If the maximum age is set to 0, the
session is closed.

7. OBJECT SESSION 263

• get-remaining-time → Integer (none)
The get-remaining-time method returns the remaining valid session time.

• get-expire-time → Integer (none)
The get-expire-time method returns the session expiration time in seconds. The
expiration time is an absolute time.

• set-expire-time → none (Integer)
The set-expire-time method sets the session expiration time. The expiration time
is an absolute time in seconds.

• get-creation-time → Integer (none)
The get-creation-time method returns the session creation time. The creation time
is an absolute time in seconds.

• get-modification-time → Integer (none)
The get-modification-time method returns the session creation time. The modifi-
cation time is an absolute time in seconds.

• get-cookie → Cookie (name)
The get-cookie method bakes a session cookie. The string argument is the cookie
name those value is the session hash id value.

• close → Cookie (name)
The close method close a session by reseting the session maximum age to 0. The
method returns a cookie that can be used for closing the session on the peer side.
The string argument is the cookie name those value is the session hash id value.

• set-visa → None (Visa)
The set-visa method set the session visa.

• get-visa → Visa (None)
The get-visa method returns the session visa.

CHAPTER 25

Web Application Extension Service

The Web Application Extension service is an original implementation that provides the
support for low level HTTP transaction as well as high level XHTML page generation.
The service combines various modules and provides access to the modern generation of web
contents.

1. Page service objects

The XhtmlRoot class is the primary interface to generate xhtml page . The class is
derived from the XmlRoot class and the Mime object. for this reason, creating a xhtml
page is equivalent to add xml nodes to the page. The xhtml version is assumed to be 1.1 .

1.1. Page creation. The XhtmlRoot constructor takes a string argument which is the
title page. When the root page is created, a head and body nodes are automatically created.
Once created, it is possible to retrieve the head and body nodes from the root node. The
head and body nodes are part of the html node which is automatically instantiated as a
XhtmlHtml object. The html node can always be retrieved from the root node with the
get-child xml method.

1 # create a new xhtml page
2 const page (afnix:wax:XhtmlRoot "AFNIX wax service")
3 # get the head node
4 const head (page:get-head)
5 # get the body node
6 const body (page:get-body)

The head and body nodes are part of the html node which is automatically instantiated
as a XhtmlHtml object. The html node can always be retrieved from the root node with
the get-child xml method. The root methods get-head and get-body are convenient methods
that ease the page design by eliminating the references to the html node.

1 # create a new xhtml page
2 const page (afnix:wax:XhtmlRoot "AFNIX wax service")
3 # get the html node
4 const html (page:get-child "html")
5 # get the head node
6 const head (html:get-head)
7 # get the body node
8 const body (html:get-body)

1.2. Page header. The XhtmlHead class is the xml node that handles the xhtml head.
The object is automatically created when calling the XhtmlRoot constructor. During the
construction process, the head is automatically set with a title. Once created, the head can
be filled with meta information and styles. The add-meta method is designed to add meta
information, while the add-style add a link node with a style reference to the head.

1 # add a meta tag
2 head:add-meta "copyright" "2025"
3 # add a style path
4 head:add-style "/style.css"

265

266 25. WEB APPLICATION EXTENSION SERVICE

The add-meta method adds a XhtmlMeta object which is a xml tag node. The first
argument is the meta descriptor while the second argument is the meta content. Note that
the add-meta method can be simulated by calling the XhtmlMeta constructor and then
adding the node to the head node.

1 # create a meta node
2 const node (afnix:wax:XhtmlMeta "copyright" "2025")
3 # add the node to the head
4 head:add node

The add-style method adds a XhtmlStyle object which is a xml tag node. The string
argument is the url style sheet path which gets automatically transformed to the form
@import(url) . Note that the add-style method can be simulated by calling the XhtmlStyle
constructor and then adding the node to the head node.

1 # create a style node
2 const node (afnix:wax:XhtmlStyle "/style.css")
3 # add the node to the head
4 head:add node

1.3. Page body. The XhtmlBody class is the xml node that handles the xhtml body.
The object is automatically created when calling the XhtmlRoot constructor. Once created,
the body node can be filled with any valid xhtml node. Since the node are initially xml tag
node, it is always possible to create a tag by name and set the attributes and child nodes
manually.

1 # create a new xhtml page
2 const page (afnix:wax:XhtmlRoot "AFNIX wax service")
3 # get the body node
4 const body (page:get-body)
5 # add a node
6 body:add-child node

1.4. Page emission. Since the XhtmlRoot object is a xml root node, the node can be
used to write the complete hierarchy. The xml node node provides the write method that
write a xml tree into a buffer of an output stream.

1 # create a new xhtml page
2 const page (afnix:wax:XhtmlRoot "AFNIX wax service")
3 # write to the output stream
4 page:write

Another mechanism for writing the page is to use the fact that the XhtmlRoot class
implements also the Mime interface. With this in mind, the XhtmlRoot can be used within
the HttpReply . This method is particularly useful when writing automated page generation,
such like CGI scripts.

1 # create a new xhtml page
2 const page (afnix:wax:XhtmlRoot "AFNIX wax service")
3 # create an http reply object
4 const reply (afnix:wax:HttpReply)
5 # write the page as a mime object
6 reply:add-buffer page
7 # write the result to the output
8 reply:write

2. PAGE DESIGN OBJECTS 267

2. Page design objects

The wax service module is designed to provide several object that ease the task of
creating a xhtml page. Such objects range from comment to table. Most of the time, the
construction is simple the resulting node only need to be added to the page tree. When
it comes to add text, the problem is becoming more subtle and is discussed later in this
section.

2.1. Comment node. Adding a comment is done with the XmlComment class which
take the comment string in the constructor. Once created, the comment node can be added
to the tree.

1 # add a comment to the body node
2 body:add-child (
3 afnix:xml:XmlComment "this is a comment")

2.2. Node style class. When the xhtml page is combined with the cascaded style
sheet (CSS), the xhtml node tag often uses a class name to refer to a particular style. The
class style is just a node attribute which can be set with the add-attribute method. However,
most of the time, the library provides object which have the style as the first argument in
the constructor. For example, the XhtmlDiv constructor take 0 or one argument. With one
argument, the string argument is used as the style attribute.

1 # create a xhtml div with a class attribute
2 const div (afnix:wax:XhtmlDiv "nice")
3 # create a xhtml div and set the class manually
4 const div (afnix:wax:XhtmlDiv)
5 div:set-attribute "class" "nice"

2.3. Adding text paragraph. Adding text to a page is not a trivial task when it
comes to deal with text style. By default, a piece of text is stored in the XmlText node.
Using this node is easy. However, in a programming context, its use can become heavy. For
this reason, all xml nodes provide the parse method which can be used to add a xml tree
to the calling node. When it comes to add text that includes rendering tag, this method is
quite handy.

1 # add a text with some piece in italic
2 node:parse "this is a <i>simple</i> method"

The XhtmlPara node is the preferred node for adding text to a xhtml page. The node
takes optionally the style name in the constructor. A boolean flag can also be used to create
an empty paragraph node.

1 # create a paragraph node with a style
2 const p (afnix:wax:XhtmlPara "title")
3 # add some text
4 p:parse "the paragraph text"

2.4. Adding reference. Adding reference or hyperlink to a page is achieved with the
XhtmlRef class. Most of the time, the object is built with a uri and a text. when the node
has been created, the node can be added to the page tree.

1 # create a hyperlink
2 const node (
3 afnix:wax:XhtmlRef "http://www.afnix.org" "afnix")
4 # add the node in a paragraph
5 p:add-child node

268 25. WEB APPLICATION EXTENSION SERVICE

2.5. Formatting elements. The XhtmlDiv and XhtmlHr classes are the basic for-
matting xhtml elements. The XhtmlDiv is a grouping element and the XhtmlHr is a simple
horizontal ruler element. Both classes take 0 or one argument which is the style name.

1 # create a div element
2 const div (afnix:wax:XhtmlDiv "menu")
3 # create a ruler element
4 const hr (afnix:wax:XhtmlHr)

3. Managing table

The wax service module provides an extensive support of he xhtml table element. There
are basically two strategies for creating a table. One is to use the html elements or the other
is to use a print table object and automatically feed the xhtml table. The first method
provides a better control while the second one is easier to use.

3.1. The table element. The XhtmlTable class is the class that manages xhtml table.
As usual, a default style name can be specified in the constructor. Eventually, a default
table row and table data default style can also be specified. Such default value are used
when creating a new row with the new-row method.

1 # create an element with a default tr and th/td style
2 const tbl (afnix:wax:XhtmlTable "text" "text" "text")
3 # get a new row with a default style
4 const tr (tbl:new-row)

In the previous example, a table is created with a default style for the table row. When
a new row is created, the default style is used for that row. If there is no default style, the
row is created without a style. Note that the new-row method takes also a style argument
that overwrites the default one.

3.2. Building the table. A table is built by adding row and data element into the
rows. A row is created with the new-row method or the object can be constructed directly
and added to the node with the add-child method. The XhtmlTr class is the table row class.

1 # get a new row with a default style
2 trans tr (tbl:new-row)
3 # create a row directly
4 trans tr (afnix:wax:XhtmlTr "text")

When a row has been created, the data can be added to the row. Normally, the new-
data method is used to create a new table data element. If a default style is defined in the
table row, the table data element is built with that style. The new-head method can also
be used to create table header element. Again, if a default table header style exists in the
table row, the element is built with that style. The XhtmlTd class is the table data class
and the XhtmlTh class is the table header class.

1 # get a new data element
2 trans td (tr:new-data)
3 # create new head element
4 trans th (tr:new-head)

When the table data node has been created, the parse method or the add-child method
can be called to add other nodes. another method for building the table is to use the add-
table method which uses a print table object. In such case, the table rows and data elements
are automatically added in the table.

3. MANAGING TABLE 269

3.3. The table structure. The table can be designed directly with table rows with
table headers and table data elements. Another method, which is more structured is to use
the table head, table body and table footer elements. The XhtmlThead class is the table
head element class. The XhtmlTbody class is the table body element class. The XhtmlTfoot
class is the table footer element class. These classes behaves exactly like the XhtmlTable
and are in fact all derived from the XhtmlTelem class.

1 # create a xhtml table
2 const table (afnix:wax:XhtmlTable "text")
3 # create a table body
4 const tbody (
5 afnix:wax:XhtmlTable "text" "text" "text")
6 # add a print tbl in the body
7 tbody:add-table ptbl
8 # add the body to the table
9 table:ad-child tbody

A table caption node can also be set with the set-caption method. The method simply
creates a XhtmlCaption node and adds it to the table. The caption text is part of the
method call which is used by the caption node constructor. It is also possible to create the
caption node by calling the XhtmlCaption constructor and adding it to the table with he
add-child method.

1 # create a xhtml table
2 const table (afnix:wax:XhtmlTable "text")
3 # set a table caption
4 table:set-caption "the afnix table system"

The table structure can also be defined with the XhtmlCgr class which corresponds to
the xhtml column group element. The column group element is designed to support the col
element that formats the table column.

1 # create a table
2 const table (afnix:wax:XhtmlTable "text")
3 # set the table with to 100%
4 table:add-attribute "width" "100%"
5 # create a column group
6 table:add-child (const xcgr (afnix:wax:XhtmlCgr))
7 # add a column with 30% width
8 cgr:add-child (afnix:wax:XhtmlCol "30%")
9 # add a column with 70% width

10 cgr:add-child (afnix:wax:XhtmlCol "70%")

CHAPTER 26

Web Application Extension Service Reference

271

272 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

1. Object XhtmlRoot

The XhtmlRoot class is a xml root node used for the design of a xhtml document page.
At construction, the root node is initialized with a default xml processing instruction, and
xhmtl node with head and body The head and body nodes can be used to add more nodes
in order to build the document. The construction argument is the page title.

1.1. Predicate.

• xhtml-root-p

1.2. Inheritance.

• XmlRootMime

1.3. Constructors.

• XhtmlRoot → (String)
The XhtmlRoot constructor creates a default xhtml page with a head and a body.
The head node is set with the string title argument.

1.4. Methods.

• get-head → XhtmlHead (none)
The get-head method returns the xhtml head node.

• get-body → XhtmlBody (none)
The get-body method returns the xhtml body node.

2. OBJECT XHTMLHTML 273

2. Object XhtmlHtml

The XhtmlHtml class is a xhtml html node used for the design of a xhtml document
page. At construction, the html node is initialized with a head node and a body node.
Because a valid xhtml document must contain a title the constructor takes at least a title
argument.

2.1. Predicate.

• xhtml-html-p

2.2. Inheritance.

• XmlTag

2.3. Constructors.

• XhtmlHtml → (String)
The XhtmlHtml constructor creates a default xhtml html node with a head and a
body. The head node is set with the string title argument.

2.4. Methods.

• get-head → XhtmlHead (none)
The get-head method returns the xhtml head node.

• get-body → XhtmlBody (none)
The get-body method returns the xhtml body node.

274 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

3. Object XhtmlHead

The XhtmlHead class is a xhtml head node used for the design of a xhtml document
page. At construction, the head node is initialized with a with a title node. The class is
designed to hold as well meta nodes and style nodes.

3.1. Predicate.

• xhtml-head-p

3.2. Inheritance.

• XmlTag

3.3. Constructors.

• XhtmlHead → (String)
The XhtmlHead constructor creates a default xhtml head node with a title. The
string argument is the head title.

3.4. Methods.

• add-meta → none (String String)
The add-meta method adds a XhtmlMeta node to the head node. The first argu-
ment is the meta descriptor. The second argument is the meta contents.

• add-style → none (String)
The add-style method adds a XhtmlLink node to the head node. The string argu-
ment is the style url path. The link node is automatically configured to reference
a ’text/css’ mime type.

4. OBJECT XHTMLBODY 275

4. Object XhtmlBody

The XhtmlBody class is a xhtml body node used for the design of a xhtml document
page. The class is designed to be filled with other xhtml nodes.

4.1. Predicate.

• xhtml-body-p

4.2. Inheritance.

• XmlTag

4.3. Constructors.

• XhtmlBody → (none)
The XhtmlBody constructor creates a default xhtml body node.

276 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

5. Object XhtmlTitle

The XhtmlTitle class is a xhtml title node used in the head node.

5.1. Predicate.

• xhtml-title-p

5.2. Inheritance.

• XmlTag

5.3. Constructors.

• XhtmlTitle → (String)
The XhtmlTitle constructor creates a xhtml title node. The string argument is the
title value. The title node is designed for the XhtmlHead class.

5.4. Methods.

• set-title → none (String)
The set-title method set the node title by value.

6. OBJECT XHTMLMETA 277

6. Object XhtmlMeta

The XhtmlMeta class is a xhtml meta node used in the head node. The meta data node
is an empty node with two attributes which are the descriptor and content value. The meta
data is stored internally as a xml attribute.

6.1. Predicate.

• xhtml-meta-p

6.2. Inheritance.

• XmlTag

6.3. Constructors.

• XhtmlMeta → (String String)
The XhtmlMeta constructor creates a xhtml meta node with a descriptor name and
content value. The first argument is he descriptor name which is used as the node
attribute name. The second argument is the content vale which is the attribute
value.

278 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

7. Object XhtmlLink

The XhtmlLink class is a xhtml link node used in the head node. The link node is an
empty node with several attributes. The most important one is the ’href’ attribute that
specifies the link uri. Other attributes like ’type’ or ’rel’ can also be set at construction.

7.1. Predicate.

• xhtml-link-p

7.2. Inheritance.

• XmlTag

7.3. Constructors.

• XhtmlLink → (String)
The XhtmlLink constructor creates a xhtml link node by reference. The first
argument is the link reference.

• XhtmlLink → (String String)
The XhtmlLink constructor creates a xhtml link node by reference and type. The
first argument is the link reference. The second argument is the link type. The
link type is defined as a mime type.

• XhtmlLink → (String String String)
The XhtmlLink constructor creates a xhtml link node by reference, type and re-
lation. The first argument is the link reference. The second argument is the link
type. The link type is defined as a mime type. The third argument is the link
relation.

8. OBJECT XHTMLSTYLE 279

8. Object XhtmlStyle

The XhtmlStyle class is a xhtml style node used in the head node. The style node is
built with a xml text node that holds the formatted url string.

8.1. Predicate.

• xhtml-style-p

8.2. Inheritance.

• XmlTag

8.3. Constructors.

• XhtmlStyle → (String)
The XhtmlStyle constructor creates a xhtml style node with a url path. The string
argument is the url path of the style sheet file.

280 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

9. Object XhtmlScript

The XhtmlScript class is a xhtml script node used in the head and body node. The
script node is built with a xml tag node that holds the script content. Sometimes it is
recommended to place the script inside a CDATA node that is stored as a child node of the
script node. A boolean flag controls this feature at construction.

9.1. Predicate.

• xhtml-script-p

9.2. Inheritance.

• XmlTag

9.3. Constructors.

• XhtmlScript → (String)
The XhtmlScript constructor creates a xhtml script node with a type. The string
argument is the mime type string such like ’text/javascript’.

• XhtmlScript → (String Boolean)
The XhtmlScript constructor creates a xhtml script node with a type and a CDATA
node control flag. The first argument is the mime type string such like ’text/-
javascript’. The second argument is the CDATA node control flag. If the flag is
true, all scripts attached to the node are placed into a ’CDATA’ node.

• XhtmlScript → (String String)
The XhtmlScript constructor creates a xhtml script node with a type and a url.
The first argument is the mime type string such like ’text/javascript’. The second
argument is the script source url.

10. OBJECT XHTMLPARA 281

10. Object XhtmlPara

The XhtmlPara class is a xhtml paragraph node used in the body element of a xhtml
page. The paragraph node can be created with a style name or as an empty node.

10.1. Predicate.

• xhtml-para-p

10.2. Inheritance.

• XmlTag

10.3. Constructors.

• XhtmlPara → (none)
The XhtmlPara constructor creates a default xhtml paragraph node.

• XhtmlPara → (String)
The XhtmlPara constructor creates a xhtml paragraph node with a style. The
string argument is the style name.

• XhtmlPara → (Boolean)
The XhtmlPara constructor creates an empty xhtml paragraph if the boolean ar-
gument is true.

282 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

11. Object XhtmlEmph

The XhtmlEmph class is a xhtml emphasize node used in the body element of a xhtml
page. The emphasize node can be created with a style name.

11.1. Predicate.

• xhtml-emph-p

11.2. Inheritance.

• XmlTag

11.3. Constructors.

• XhtmlEmph → (none)
The XhtmlEmph constructor creates a default xhtml emphasize node.

• XhtmlEmph → (String)
The Xhtmlemph constructor creates a xhtml emphasize node with a style. The
string argument is the style name.

12. OBJECT XHTMLREF 283

12. Object XhtmlRef

The XhtmlRef class is a xhtml reference node used in the body element of a xhtml page.
The node can be used to create hyperlink that references object by a uri.

12.1. Predicate.

• xhtml-ref-p

12.2. Inheritance.

• XmlTag

12.3. Constructors.

• XhtmlRef → (none)
The XhtmlRef constructor creates a default xhtml reference node.

• XhtmlRef → (String)
The XhtmlRef constructor creates a xhtml reference node with a uri. The string
argument is the uri to use.

• XhtmlRef → (String String)
The XhtmlRef constructor creates a xhtml reference node with a uri and a reference
text. The first argument is the uri. The second argument is the reference text.

284 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

13. Object XhtmlImg

The XhtmlImg class is a xhtml image node used in the html body. The image node
is an empty node with several attributes including the image source, the image width and
height and an alternate string.

13.1. Predicate.

• xhtml-img-p

13.2. Inheritance.

• XmlTag

13.3. Constructors.

• XhtmlImg → (String String)
The XhtmlImg constructor creates a xhtml image node by source and alternate
name. The first argument is the image uri. The second argument is the alternate
name.

13.4. Methods.

• set-width → none (String)
The set-width method set the image width attribute.

• set-height → none (String)
The set-height method set the image height attribute.

• set-geometry → none (String)
The set-geometry method set the image width and height attribute in one call.

14. OBJECT XHTMLDIV 285

14. Object XhtmlDiv

The XhtmlDiv class is a xhtml div node used in the body element of a xhtml page. The
div node is a xhtml grouping element.

14.1. Predicate.

• xhtml-div-p

14.2. Inheritance.

• XmlTag

14.3. Constructors.

• XhtmlDiv → (none)
The XhtmlDiv constructor creates a default xhtml div node.

• XhtmlDiv → (String)
The XhtmlDiv constructor creates a xhtml div node with a style. The string
argument is the style name.

286 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

15. Object XhtmlPre

The XhtmlPre class is a xhtml pre node used in the body element of a xhtml page. The
pre node is a xhtml formatting element.

15.1. Predicate.

• xhtml-pre-p

15.2. Inheritance.

• XmlTag

15.3. Constructors.

• XhtmlPre → (none)
The XhtmlPre constructor creates a default xhtml pre node.

• XhtmlPre → (String)
The XhtmlPre constructor creates a xhtml pre node with a style. The string
argument is the style name.

16. OBJECT XHTMLHR 287

16. Object XhtmlHr

The XhtmlHr class is a xhtml hr node used in the body element of a xhtml page. The
hr node is a xhtml horizontal ruler element.

16.1. Predicate.

• xhtml-hr-p

16.2. Inheritance.

• XmlTag

16.3. Constructors.

• XhtmlHr → (none)
The XhtmlHr constructor creates a default xhtml hr node.

• XhtmlHr → (String)
The XhtmlHr constructor creates a xhtml hr node with a style. The string argu-
ment is the style name.

288 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

17. Object XhtmlCgr

The XhtmlCgr class is a xhtml column group node used in the table element. The
column group is designed to hold the column definition bound by the XhtmlCol class.

17.1. Predicate.

• xhtml-cgr-p

17.2. Inheritance.

• XmlTag

17.3. Constructors.

• XhtmlCgr → (none)
The XhtmlCgr constructor creates a default xhtml colgroup node.

18. OBJECT XHTMLCOL 289

18. Object XhtmlCol

The XhtmlCol class is a xhtml column node used in the table column group element.

18.1. Predicate.

• xhtml-col-p

18.2. Inheritance.

• XmlTag

18.3. Constructors.

• XhtmlCol → (none)
The XhtmlCol constructor creates a default xhtml col node.

• XhtmlCol → (String)
The XhtmlCol constructor creates a xhtml col node with a string width argument.
The argument is the width attribute value.

290 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

19. Object XhtmlTh

The XhtmlTh class is a xhtml th node used in the table row. The object can be built
with a style name.

19.1. Predicate.

• xhtml-th-p

19.2. Inheritance.

• XmlTag

19.3. Constructors.

• XhtmlTh → (none)
The XhtmlTh constructor creates a default xhtml th node.

• XhtmlTh → (String)
The XhtmlTh constructor creates a xhtml th node with a style. The string argu-
ment is the style name.

20. OBJECT XHTMLTD 291

20. Object XhtmlTd

The XhtmlTd class is a xhtml td node used in the table row. The object can be built
with a style name.

20.1. Predicate.

• xhtml-td-p

20.2. Inheritance.

• XmlTag

20.3. Constructors.

• XhtmlTd → (none)
The XhtmlTd constructor creates a default xhtml td node.

• XhtmlTd → (String)
The XhtmlTd constructor creates a xhtml td node with a style. The string argu-
ment is the style name.

292 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

21. Object XhtmlTr

The XhtmlTr class is a xhtml tr node used in the table node. The table row node is
designed to accumulate table head or table data nodes.

21.1. Predicate.

• xhtml-tr-p

21.2. Inheritance.

• XmlTag

21.3. Constructors.

• XhtmlTr → (none)
The XhtmlTr constructor creates a default xhtml tr node.

• XhtmlTr → (String)
The XhtmlTr constructor creates a xhtml tr node with a style. The string argument
is the style name.

• XhtmlTr → (String String)
The XhtmlTr constructor creates a xhtml tr node with a style and a default table
data style. The string argument is the table row style name. The second argument
is the default table data style.

21.4. Methods.

• new-head → XhtmlTh (none — String)
The new-head method returns a new table head data object. Without argument,
a default XhtmlTh object is created. With a string argument, the XhtmlTh object
is constructed with a style name.

• new-data → XhtmlTd (none — String)
The new-data method returns a new table data object. Without argument, a
default XhtmlTd object is created. With a string argument, the XhtmlTd object
is constructed with a style name.

• set-head-class → none (String)
The set-head-class method sets the default table head style. The default style is
use with the new-head method.

• set-data-class → none (String)
The set-data-class method sets the default table data style. The default style is
use with the new-data method.

• set-xdef-class → none (String)
The set-xdef-class method sets the default table head and data style. The default
style is use with the new-head and new-data methods. This method combines the
set-head-class and the set-head-class

22. OBJECT XHTMLTELEM 293

22. Object XhtmlTelem

The XhtmlTelem class is an abstract class that implements the node behavior for the
table head, body, foot and table elements. The table element node is designed to accumulate
table row nodes. This class cannot be constructed directly.

22.1. Predicate.

• xhtml-telem-p

22.2. Inheritance.

• XmlTag

22.3. Methods.

• new-row → XhtmlTr (none — String)
The new-row method returns a new table row object. Without argument, a de-
fault XhtmlTr object is created. With a string argument, the XhtmlTr object is
constructed with a style name.

• add-table → none (PrintTable [Boolean])
The add-table method adds a print table into the table element by adding auto-
matically the row and the associated formatting information such like the data
direction. The optional second argument controls whether or not the table tag
shall be used to build reference node for the table elements.

• set-xrow-class → none (String)
The set-xrow-class method sets the default table row data style. The default row
style is use with the new-row method.

• set-xdef-class → none (String)
The set-xdef-class method sets the default table head and data style. The default
style is use with the new-row method to set the table head and data default style.

294 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

23. Object XhtmlThead

The XhtmlThead class is a xhtml thead node. The table head node is designed to
accumulate table rows nodes. The class acts almost like the xhtml table class.

23.1. Predicate.

• xhtml-thead-p

23.2. Inheritance.

• XhtmlTelem

23.3. Constructors.

• XhtmlThead → (none)
The XhtmlThead constructor creates a default xhtml table head node.

• XhtmlThead → (String)
The XhtmlThead constructor creates a xhtml table head node with a style. The
string argument is the style name.

• XhtmlThead → (String String)
The XhtmlThead constructor creates a xhtml table head node with a style and a
default table row style. The string argument is the table head style name. The
second argument is the default table row style.

• XhtmlThead → (String String String)
The XhtmlThead constructor creates a xhtml table head node with a style, a
default table row style and a default table data style. The string argument is the
table head style name. The second argument is the default table row style. The
third argument is the table data style.

24. OBJECT XHTMLTBODY 295

24. Object XhtmlTbody

The XhtmlTbody class is a xhtml tbody node. The table body node is designed to
accumulate table rows nodes. The class acts almost like the xhtml table class.

24.1. Predicate.

• xhtml-tbody-p

24.2. Inheritance.

• XhtmlTelem

24.3. Constructors.

• XhtmlTbody → (none)
The XhtmlTbody constructor creates a default xhtml table body node.

• XhtmlTbody → (String)
The XhtmlTbody constructor creates a xhtml table body node with a style. The
string argument is the style name.

• XhtmlTbody → (String String)
The XhtmlTbody constructor creates a xhtml table body node with a style and a
default table row style. The string argument is the table body style name. The
second argument is the default table row style.

• XhtmlTbody → (String String String)
The XhtmlTbody constructor creates a xhtml table body node with a style, a
default table row style and a default table data style. The string argument is the
table body style name. The second argument is the default table row style. The
third argument is the table data style.

296 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

25. Object XhtmlTfoot

The XhtmlTfoot class is a xhtml tfoot node. The table foot node is designed to accu-
mulate table rows nodes. The class acts almost like the xhtml table class.

25.1. Predicate.

• xhtml-tfoot-p

25.2. Inheritance.

• XhtmlTelem

25.3. Constructors.

• XhtmlTfoot → (none)
The XhtmlTfoot constructor creates a default xhtml table foot node.

• XhtmlTfoot → (String)
The XhtmlTfoot constructor creates a xhtml table foot node with a style. The
string argument is the style name.

• XhtmlTfoot → (String String)
The XhtmlTfoot constructor creates a xhtml table foot node with a style and a
default table row style. The string argument is the table foot style name. The
second argument is the default table row style.

• XhtmlTfoot → (String String String)
The XhtmlTfoot constructor creates a xhtml table foot node with a style, a default
table row style and a default table data style. The string argument is the table
foot style name. The second argument is the default table row style. The third
argument is the table data style.

26. OBJECT XHTMLTABLE 297

26. Object XhtmlTable

The XhtmlTable class is a xhtml table node. The table node is designed to accumulate
table row nodes or column group nodes. The table can also be designed with a table head,
body and foot nodes.

26.1. Predicate.

• xhtml-table-p

26.2. Inheritance.

• XhtmlTelem

26.3. Constructors.

• XhtmlTable → (none)
The XhtmlTable constructor creates a default xhtml table foot node.

• XhtmlTable → (String)
The XhtmlTable constructor creates a xhtml table foot node with a style. The
string argument is the style name.

• XhtmlTable → (String String)
The XhtmlTable constructor creates a xhtml table foot node with a style and a
default table row style. The string argument is the table foot style name. The
second argument is the default table row style.

• XhtmlTable → (String String String)
The XhtmlTable constructor creates a xhtml table foot node with a style, a default
table row style and a default table data style. The string argument is the table
foot style name. The second argument is the default table row style. The third
argument is the table data style.

26.4. Methods.

• set-caption → none (String)
The set-caption method sets the table caption. A new XhtmlCaption node is
automatically added to the table tree during this method call.

298 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

27. Object XmlMime

The XmlMime class is a generic xml mime document class. The class is used to construct
a mime version of a xml document which can be obtained from a file name, or an input
stream. By default, the mime type ’application/xml’.

27.1. Predicate.

• xml-mime-p

27.2. Inheritance.

• XmlDocumentMime

27.3. Constructors.

• XmlMime → (none)
The XmlMime constructor creates a default xml mime document.

• XmlMime → (String)
The XmlMime constructor creates a xml mime document by parsing a file. The
file name is the string argument.

• XmlMime → (String InputStream)
The XmlMime constructor creates a xml mime document by name and by parsing
the input stream. The first argument is the xml document name. The second
argument is the input stream to parse.

28. OBJECT XHTMLMIME 299

28. Object XhtmlMime

The XhtmlMime class is a generic xhtml mime document class. The class is used to
construct a mime version of a xhtml document which can be obtained from a file name, or
an input stream. By default, the mime type ’application/xhtml+xml’.

28.1. Predicate.

• xhtml-mime-p

28.2. Inheritance.

• XmlMime

28.3. Constructors.

• XhtmlMime → (none)
The XhtmlMime constructor creates a default xhtml mime document.

• XhtmlMime → (String)
The XhtmlMime constructor creates a xhtml mime document by parsing a file.
The file name is the string argument.

• XhtmlMime → (String InputStream)
The XhtmlMime constructor creates a xhtml mime document by name and by
parsing the input stream. The first argument is the xhtml document name. The
second argument is the input stream to parse.

300 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

29. Object XhtmlForm

The XhtmlForm class is a generic xhtml form object. A form is defined by an action
and a method. When the form is created, it is appropriate to add other xhtml objects.

29.1. Predicate.

• xhtml-form-p

29.2. Inheritance.

• XhtmlTag

29.3. Constructors.

• XhtmlForm → (String String)
The XhtmlForm constructor creates a xhtml form by action and method. The first
argument is the uri path for the action while the second argument is the method
to use for the action.

30. OBJECT XHTMLTEXT 301

30. Object XhtmlText

The XhtmlText class is a generic xhtml input text object. An input text is a form
element which is used to capture text in a field. The text value is attached with the name
attribute.

30.1. Predicate.

• xhtml-text-p

30.2. Inheritance.

• XhtmlTag

30.3. Constructors.

• XhtmlText → (String)
The XhtmlText constructor creates a xhtml input text by name.

• XhtmlText → (String String)
The XhtmlText constructor creates a xhtml input text by name and size. The first
argument is the input text name and the second argument is the text field size.

30.4. Methods.

• set-size → none (String)
The set-size method sets the input text size.

302 26. WEB APPLICATION EXTENSION SERVICE REFERENCE

31. Object XhtmlSubmit

The XhtmlSubmit class is a generic xhtml input submit object. An input submit object
is a button which is used inside a form generally as a condition to activate the form.

31.1. Predicate.

• xhtml-submit-p

31.2. Inheritance.

• XhtmlTag

31.3. Constructors.

• XhtmlSubmit → (String)
The XhtmlSubmit constructor creates a xhtml submit button by value.

• XhtmlText → (String String)
The XhtmlText constructor creates a xhtml submit button by value and size. The
first argument is the input submit value and the second argument is the submit
size.

31.4. Methods.

• set-size → none (String)
The set-size method sets the submit button size.

CHAPTER 27

XML Processing Environment Service

The XML Processing Environment service is an original implementation that provides
the support for processing xml document that could be accessed locally or remotely. In
particular, the processing environment supports the XML include facility.

1. XML content

The XmlContent class is an extension of the XML document object that provides the
service for loading a XML document locally or from the Internet. The class operates with
an uri, which permits to selects the appropriate loader from the uri scheme.

1.1. Content creation. The XmlContent operates with an uri that permits to select
the appropriate loader. If the uri scheme is a file scheme, the content is retrieved locally. If
the uri scheme is http, the content is retrieved by establishing a http connection over the
Internet.

1 # create a document from a local file
2 const xdoc (
3 afnix:xpe:XmlContent "file:///home/afnix/file.xml")

When the uri scheme is a file, the uri authority is empty (hence the double //) and the
path indicates the file to parse. The XmlContent object is derived from the XmlDocument
object which contains the parsed tree with the XmlRoot object.

1 # create a document from a http connection
2 const xdoc (
3 afnix:xpe:XmlContent
4 "http://www.afnix.org/index.xht")

When the uri scheme is a http scheme, the document is downloaded by establishing an
http connection with the uri authority. When the http header is received, the content is
parsed to create a valid xml document. If the http response header indicates that the page
has moved and a new location is provided, the object manages automatically to follow such
location.

1.2. Content and document name. Since the XmlContent object is derived from
the XmlContent object, the content object is defined with a uri name and a document
name. Under normal circumstances, the document name is derived from the content name
by normalizing it. The content name is the object constructor name, while the document
name is the normalized document name. The get-name method returns the content name
while the get-document-name method returns the document name.

1 # create a document by name
2 const xdoc (afnix:xpe:XmlContent "file" "file.xml")

In the previous example, a xml content object is created by name with a document
name. It is the document name that gets normalized. Therefore in the previous example,
the file.xml document name is normalized into a file uri. The normalization rule always

303

304 27. XML PROCESSING ENVIRONMENT SERVICE

favor the file scheme. This means that without a scheme, the file scheme is automatically
added.

1.3. Content type. Many times, the content type cannot be detected from the uri
name. Once opened, if the content header provides a clue about the content type, the
opened input stream get adjusted automatically to reflect this fact. However, this situation
does not occurs often and with http scheme, the content type header response does not
often provides the character encoding associated with the stream. For this reason, the
XmlContent constructor provides a mechanism to accept the encoding mode.

1 # create a new content by name and encoding mode
2 const xdoc (
3 afnix:xpe:XmlContent "file" "file.xml" "UTF-8")

CHAPTER 28

XML Processing Environment Service Reference

305

306 28. XML PROCESSING ENVIRONMENT SERVICE REFERENCE

1. Object XmlContent

The XmlContent class is an extension of the xml document class that operates at the uri
level. If the uri is a local file the xml document is created from an input file stream. If the
uri is an url, the content is fetched automatically. The class constructors permit to separate
the content name from the document name and also to specify the content encoding.

1.1. Predicate.

• xml-content-p

1.2. Inheritance.

• XmlDocumentMime

1.3. Constructors.

• XmlContent → (String)
The XmlContent constructor creates a xml document by name. The document
name is the normalized uri name that always favor a file scheme in the absence of
it.

• XmlContent → (String String)
The XmlContent constructor creates a xml document by name. The first argu-
ment is the content name. The second argument is the document name which is
normalized to form the uri name used to load the document.

• XmlContent → (String String String)
The XmlContent constructor creates a xml document by name and encoding mode.
The first argument is the content name. The second argument is the document
name which is normalized to form the uri name used to load the document. The
third argument is the content character encoding.

1.4. Methods.

• get-document-uri → String (none)
The get-document-uri method returns the document normalized uri.

• get-document-name → String (none)
The get-document-name method returns the object document name. This method
complements the get-name method which returns the object name.

2. OBJECT XMLFEATURE 307

2. Object XmlFeature

The XmlFeature class is a xml processor base class that defines a processing feature. A
processing feature is defined by name and information with a processing level. The default
processing level is null. When the processor is called, it calls sequentially and in ascending
order all features.

2.1. Predicate.

• xhtml-feature-p

2.2. Inheritance.

• Nameable

2.3. Methods.

• get-info → String (none)
The get-info method returns the xml feature information string. The feature name
is available from the get-name provided by the Nameable base class.

• set-processing-level → none (Integer)
The set-processing-level method sets the feature processing level. The integer
argument is the level to set.

• get-processing-level → Integer (none)
The get-processing-level method returns the feature processing level.

• processing-level-p → Boolean (Integer)
The processing-level-p predicate returns true if the integer argument equal the
feature processing level.

• process → XmlContent (XmlContent)
The process method process the input xml content and returns a new xml content.
The method is automatically called by the xml processor.

308 28. XML PROCESSING ENVIRONMENT SERVICE REFERENCE

3. Object XmlProcessor

The XmlProcessor class is a global class designed to operate on a xml content. The xml
processor provides several features that can be enabled prior the document processor. Once
the features are defined, the ’process’ method can be called and a new xml content can be
produced.

3.1. Predicate.

• xml-processor-p

3.2. Inheritance.

• Object

3.3. Constructors.

• XmlProcessor → (none)
The XmlProcessor constructor creates a default xml processor without any feature.

3.4. Methods.

• feature-length → Integer (none)
The feature-length method returns the number of features defined in the xml pro-
cessor.

• add-feature → none (XmlFeature)
The add-feature method adds a feature object to the processor. The feature pro-
cessing level does not have to be sorted prior the insertion. Adding multiple feature
creates a processor chain.

• get-feature → XmlFeature (Integer)
The get-feature method return a processor feature by index.

• process → XmlFeature (XmlFeature)
The process method create a new xml content by calling processing feature chain.
The feature chain consists of feature object sorted in ascending order. If the
processor contains only one feature, calling the process method is equivalent to
call the XmlFeature same method.

4. OBJECT XMLINCLUDE 309

4. Object XmlInclude

The XmlInclude class is a xml processor feature class designed to handle the ”XInclude”
schema that permits to include xml document. The feature operates recursively by scanning
the document for a ”xi:include” tag and replacing the content by the appropriate tree. The
feature operates recursively unless specified otherwise.

4.1. Predicate.

• xml-include-p

4.2. Inheritance.

• XmlFeature

4.3. Constructors.

• XmlInclude → (none)
The XmlInclude constructor creates a default xml include feature. The default
feature processing level is 10.

• XmlInclude → (Integer)
The XmlInclude constructor creates a xml include feature with a processing level.
The integer argument is the feature processing level to set.

Index

*=, 40

++, 54

+=, 40

-=, 40

/=, 40

==, 40, 54

?=, 40

>, 54

>=, 54

<, 54

<=, 54

absolute-path, 159

accept, 59, 63

add, 7–9, 32, 153, 174, 176, 179, 181, 183, 192,

209, 244, 256

add-attribute, 223

add-child, 221

add-credential, 258

add-data, 177

add-days, 192

add-directory-name, 156

add-feature, 308

add-footer, 177

add-header, 177

add-hours, 192

add-list-option, 197

add-marker, 177

add-meta, 274

add-minutes, 192

add-months, 196

add-path, 75, 157, 158

add-sign, 177

add-string-option, 197

add-style, 274

add-table, 293

add-tag, 178

add-vector-option, 198

add-years, 196

Address, 54

Aes, 119

APPLICATION, 14

asn-random-bits, 34

asn-random-octets, 34

AsnBits, 21

AsnBmps, 22

AsnBoolean, 19

AsnBuffer, 16

AsnEoc, 18

AsnGtm, 28

AsnIas, 23

AsnInteger, 20

AsnNull, 17

AsnNums, 24

AsnOctets, 15

AsnOid, 33

AsnPrts, 25

AsnRoid, 34

AsnSequence, 30

AsnSet, 31

AsnUnvs, 27

AsnUtc, 29

AsnUtfs, 26

attribute-child-p, 221

attribute-length, 223

attribute-p, 220

BALANCED, 206

BER, 14

bind, 57

Blob, 257

Bloc, 258

BROADCAST, 56

BYTE, 138

cardinality, 7

Carrier, 259

CBC, 117

CDATA, 242

Cell, 172

CER, 14

CFB, 117

check, 206, 209

child-length, 221

child-p, 221

clear, 6, 9, 40

clear-attribute, 223, 243

clear-child, 221

clear-prefix, 243

close, 87, 141, 146, 263

compute, 100, 111, 123

connect, 57

constructed-p, 14

consume, 140

311

312 INDEX

content-length-p, 78

CONTEXT-SPECIFIC, 14

convert, 176

Cookie, 84

copy, 220

create, 261

CREF, 242

Date, 194

date, 194

day, 195

declaration-p, 235

decode, 137

DEFAULT, 136

degree, 8

del-attribute-child, 221

del-child, 221

Delegate, 260

depth, 243

DER, 14

derive, 100, 111, 123

dir-p, 156, 158

Directory, 160

DONT-ROUTE, 56

dot, 40

DSA, 124

Dsa, 125

DSA-R-COMPONENT, 124

DSA-S-COMPONENT, 124

dup-body, 235

ECB, 117

Edge, 7

ELEM, 242

empty-p, 197

encode, 137

encoding-mode-p, 79

END, 245

end-p, 245

ENT, 242

eos-p, 139

EREF, 242

errorln, 145

ErrorTerm, 149

exists-p, 181, 183, 261

exit, 198

expire-p, 86, 262

extension-to-mime, 87

feature-length, 308

fermat-p, 42

file-p, 156, 158

filter, 179

find, 174, 179

find-marker, 177

find-sign, 177

find-tag, 178

flush, 139, 147, 148

Folio, 179

format, 32, 100, 110, 111, 124, 148, 193, 195

GE, 242

generate-id, 243

get, 7, 8, 32, 40, 143, 152, 172, 174, 176, 179,

183, 209

get-address, 55, 260

get-alias-address, 55

get-alias-name, 55

get-alias-size, 55

get-alias-vector, 55

get-aname, 75

get-attribute, 223

get-attribute-list, 249

get-attribute-name, 234

get-attribute-value, 223, 249

get-authority, 74, 77

get-base, 74

get-base-day, 193

get-base-name, 159

get-base-path, 159

get-bits, 110

get-block-size, 116

get-body, 236, 272, 273

get-buffer-length, 140

get-byte, 100, 110, 111

get-canonical-name, 55

get-child, 221

get-class, 14

get-client, 6

get-comment, 85

get-comment-url, 85

get-content-buffer, 16

get-content-length, 14, 79

get-cookie, 87, 263

get-creation-time, 87, 263

get-credential, 258

get-crypted-size, 120

get-data, 239

get-declaration, 235

get-directory-name, 156

get-discard, 85

get-document-name, 306

get-document-uri, 306

get-domain, 85

get-domain-name, 199

get-element-name, 234

get-encoding, 235

get-encoding-mode, 79, 138

get-env, 198

get-escape, 207, 210

get-escape-map, 210

get-expire-time, 87, 263

get-extension, 159

get-feature, 308

get-file-name, 156

get-files, 160

get-footer, 177

get-fragment, 74

get-full, 157

get-hash-id, 86, 262

get-hash-length, 100

get-hasher, 112, 121

get-head, 272, 273

INDEX 313

get-header, 177, 256

get-hname, 74

get-host, 75

get-host-fqdn, 199

get-host-name, 199

get-href, 75

get-index, 6, 77, 174, 208, 221

get-index-cell, 181

get-index-record, 182

get-index-sheet, 182

get-info, 178, 180, 248, 261, 307

get-info-vector, 248

get-input-encoding-mode, 58

get-input-stream, 151

get-iv, 118

get-key, 115

get-kid, 256

get-list, 160

get-location, 82

get-loopback, 55

get-map, 210

get-marker, 177

get-max-age, 86, 262

get-maximum-age, 84

get-media-type, 79

get-message-size, 120

get-method, 80

get-mode, 117

get-modification-time, 87, 141, 164, 263

get-name, 54, 84, 160, 172, 174, 178, 180, 183,
207, 223, 228, 237, 238, 246

get-node, 241, 243, 247, 248

get-object, 259

get-oid, 33, 34

get-option, 198

get-output-encoding-mode, 58

get-output-stream, 151, 162

get-padding-label, 122

get-padding-mode, 116, 122

get-padding-seed, 122

get-parent, 220

get-path, 74, 85, 86, 156, 158, 262

get-path-encoded, 75

get-path-target, 74

get-peer-address, 57

get-peer-authority, 57

get-peer-port, 57

get-pid, 198

get-plist, 256

get-port, 75, 85

get-primary-prompt, 150

get-processing-level, 307

get-public-id, 227, 239, 240

get-query, 74, 76

get-random-bitset, 42

get-random-integer, 42

get-random-prime, 42

get-random-real, 42

get-random-relatif, 42

get-relatif-component, 124

get-relatif-key, 110

get-remaining-time, 87, 263

get-result-length, 100

get-reverse, 115

get-rid, 257

get-rname, 74

get-root, 77, 156, 236, 241

get-scheme, 74

get-secondary, 150

get-secure, 85

get-sign, 177

get-size, 40, 110, 111

get-socket-address, 57

get-socket-authority, 57

get-socket-port, 57

get-source, 208

get-source-line, 221, 246

get-source-name, 221, 246

get-status-code, 82

get-string-option, 198

get-subdirs, 160

get-system-id, 227, 239, 240

get-system-path, 75

get-tag, 178, 207, 208

get-tag-number, 14

get-tcp-service, 55

get-tee, 155, 162

get-tee-stream, 155

get-text, 249

get-time, 192

get-timeout, 139

get-transcoding-mode, 137

get-type, 110

get-udp-service, 55

get-unique-id, 198

get-unique-option, 197, 198

get-uri, 81

get-user-message, 198

get-user-name, 199

get-value, 84, 208, 231, 256

get-vector, 55

get-vector-arguments, 198

get-vector-option, 198

get-version, 84

get-visa, 263

get-xref, 180, 230

get-xval, 224–228, 233, 237, 239, 240

getu, 139, 210

Graph, 9

hash-p, 100

header-exists-p, 78

header-find, 78

header-get, 78

header-length, 78

header-lookup, 78

header-map, 78

header-plist, 78

header-set, 78

HOP-LIMIT, 56

hours, 193

HttpRequest, 80

314 INDEX

HttpResponse, 82

I8859-01, 136

I8859-02, 136

I8859-03, 136

I8859-04, 136

I8859-05, 136

I8859-06, 136

I8859-07, 136

I8859-08, 136

I8859-09, 136

I8859-10, 136

I8859-11, 136

I8859-13, 137

I8859-14, 137

I8859-15, 137

I8859-16, 137

ID, 242

INDEX, 242

Index, 181

input-add, 153

input-get, 153

input-length, 154

InputCipher, 117

InputFile, 141

InputMapped, 142

InputOutput, 152

InputString, 143

InputTerm, 144

Intercom, 151

ipv6-p, 57

Kdf1, 113

Kdf2, 114

KEEP-ALIVE, 56

Key, 109

kid-p, 256

KMAC, 109

KRSA, 109

KSYM, 109

length, 14, 32, 141, 142, 147, 148, 156, 158, 164,

174, 176, 180, 181, 183, 209, 248

Lexeme, 208

LINGER, 56

listen, 59

Literate, 210

local-p, 158

location-p, 82

Logtee, 155, 162

lookup, 174, 179, 183

lookup-attribute, 223

lookup-child, 221

lseek, 141, 142

map, 174

map-day, 195

map-footer, 177

map-header, 177

map-month, 195

map-request-uri, 77

map-status-code, 82

map-xval, 228

mark, 154

marked-p, 154

marker-length, 177

match, 206

MAX-SEGMENT-SIZE, 56

Md2, 101

Md4, 102

Md5, 103

media-type-p, 79

merge, 221

mhdir, 159

miller-rabin-p, 42

mime-extension-p, 87

mime-value-p, 87

minutes, 193

mkdir, 159, 160

month, 194

Multicast, 66

MULTICAST-HOP-LIMIT, 56

MULTICAST-LOOPBACK, 56

NAME, 242

name-p, 220

NamedFifo, 163

new-data, 292

new-head, 292

new-row, 293

newline, 145

next-dir-name, 161

next-dir-path, 161

next-file-name, 161

next-file-path, 161

next-name, 160

next-path, 161

NIL, 124

nil-child-p, 221

NO-DELAY, 57

node-add, 30, 31

node-get, 30, 31

node-length, 30, 31

node-map, 16

norm, 40

normal-p, 245

normalize, 77, 157

normalize-uri-host, 88

normalize-uri-name, 87

normalize-uri-port, 88

OFB, 117

Oid, 32

open-p, 57

Options, 197

output-add, 153

output-get, 154

output-length, 154

OutputBuffer, 148

OutputFile, 146

OutputString, 147

OutputTerm, 149

PAD-ANSI-X923, 116

INDEX 315

PAD-BIT-MODE, 116

PAD-NIST-800, 116

PAD-NONE, 116

PAD-OAEP-K1, 121

PAD-OAEP-K2, 121

PAD-PKCS-11, 121

PAD-PKCS-12, 121

parse, 16, 74, 76, 78, 197, 220, 241

Part, 256

path-uri-name, 88

Pathlist, 158

Pathname, 156

Pattern, 206

permutate, 41

PI, 242

pkcs-primitive, 122

prime-probable-p, 43

primitive-p, 14

PRIVATE, 14

process, 307, 308

processing-level-p, 307

property-p, 256

pushback, 140

RCV-SIZE, 56

read, 139, 163, 210

readln, 139

Record, 174

RECURSIVE, 206

recv, 151

REF, 245

ref-p, 245

REGEX, 206

relative-path, 159

remove-extension, 159

request, 151

reserved-p, 245

reset, 7–9, 14, 16, 32, 40, 78, 100, 111, 115, 117,
123, 124, 156, 158, 175, 178, 180, 181, 183,

197, 210, 241

resolve, 54, 158

REUSE-ADDRESS, 56

reverse, 41

rid-p, 257

rmdir, 159, 160

rmfile, 159, 160

Rsa, 121

RSA-MODULUS, 109

RSA-PUBLIC-EXPONENT, 109

RSA-SECRET-EXPONENT, 109

Rvector, 42

save, 173

saveas, 173

scan, 209

Scanner, 209

seconds, 193

select, 243

Selector, 153

send, 151

Session, 86, 262

set, 40, 143, 152, 172, 174, 176, 179

set-address, 260

set-attribute, 223, 243, 249

set-attribute-name, 234

set-balanced, 207

set-caption, 297

set-client, 6

set-comment, 85

set-comment-url, 85

set-cookie, 83

set-data-class, 292

set-default, 234

set-directory-name, 156

set-discard, 85

set-domain, 85

set-element-name, 234

set-encoding-mode, 58, 138

set-escape, 207, 210

set-escape-map, 210

set-expire-time, 87, 263

set-file-name, 156

set-fixed, 234

set-footer, 177

set-geometry, 284

set-hash-id, 86, 262

set-hasher, 122

set-head-class, 292

set-header, 177

set-height, 284

set-idnex, 6

set-ignore-eos, 144

set-index, 208

set-index-cell, 181

set-index-record, 182

set-index-sheet, 182

set-info, 178, 180

set-input-encoding-mode, 58

set-input-stream, 151, 247

set-is, 118

set-iv, 118

set-key, 115

set-local-search, 158

set-location, 83

set-map, 210

set-mapped-eos, 144

set-marker, 177

set-max-age, 86, 262

set-maximum-age, 85

set-method, 80

set-name, 84, 163, 172, 175, 178, 180, 207, 223,
228, 236–238, 248, 249

set-node, 243

set-option, 58

set-output-encoding-mode, 58

set-output-stream, 151, 162

set-padding-label, 122

set-padding-mode, 116, 122

set-padding-seed, 122

set-parent, 220

set-path, 85, 86, 262

set-port, 85

set-prefix, 243

316 INDEX

set-primary-prompt, 150

set-processing-level, 307

set-regex, 207

set-reverse, 115

set-rid, 257

set-secondary-prompt, 150

set-secure, 85

set-sign, 177

set-size, 301, 302

set-source, 208

set-source-line, 221, 246

set-source-name, 222, 246

set-status-code, 82

set-tag, 178, 207, 208

set-tee, 155, 162

set-tee-stream, 155

set-text, 249

set-time, 192

set-timeout, 139

set-title, 276

set-transcoding-mode, 137

set-type, 234

set-uri, 80

set-user-message, 198

set-value, 84, 208, 231

set-version, 84

set-visa, 263

set-width, 284

set-xdef-class, 292, 293

set-xref, 230

set-xrow-class, 293

set-xval, 224–226, 228, 237

Sha1, 104

Sha224, 105

Sha256, 106

Sha384, 107

Sha512, 108

Sheet, 176

shutdown, 57

sid-add, 33, 34

sid-get, 33, 34

sid-length, 33, 34

Signature, 124

signature-length, 177

sleep, 198

SND-SIZE, 56

sort, 174, 176

sort-ascent, 211

sort-descent, 211

sort-lexical, 211

State, 6

status-error-p, 82

status-ok-p, 82

stream, 115

string-uri-p, 87

system-uri-name, 87

TAG, 242, 245

tag-length, 178

tag-p, 178, 179, 245

TcpClient, 60

TcpServer, 61

TcpSocket, 59

Terminal, 150

TEXT, 242

text-p, 245

textable-p, 245

Time, 192

tmp-name, 159

tmp-path, 159

to-bits, 21

to-boolean, 19

to-buffer, 15

to-date, 195

to-iso, 193, 195

to-lteral, 256

to-normal, 224

to-relatif, 20

to-rfc, 193, 195

to-string, 22–29, 85, 140, 147, 148

to-text, 220

to-time, 28, 29, 196

to-web, 195

Transcoder, 137

translate, 210

TXT, 245

UdpClient, 64

UdpServer, 65

UdpSocket, 63

UNIVERSAL, 14

update, 164, 261

update-index-cell, 181

update-index-record, 182

update-index-sheet, 182

Uri, 74

UriPath, 77

UriQuery, 76

usage, 197

utc-p, 28, 29

UTF-8, 138

valid-p, 137, 139, 244, 261

Vertex, 8

wait, 153

wait-all, 153

week-day, 195

write, 14, 78, 145, 163, 179, 220

write-eos, 145

write-etx, 145

write-soh, 145

write-stx, 145

writeln, 145

XhtmlBody, 275

XhtmlCgr, 288

XhtmlCol, 289

XhtmlDiv, 285

XhtmlEmph, 282

XhtmlForm, 300

XhtmlHead, 274

XhtmlHr, 287

INDEX 317

XhtmlHtml, 273
XhtmlImg, 284

XhtmlLink, 278

XhtmlMeta, 277
XhtmlMime, 299

XhtmlPara, 281

XhtmlPre, 286
XhtmlRef, 283

XhtmlRoot, 272
XhtmlScript, 280

XhtmlStyle, 279

XhtmlSubmit, 302
XhtmlTable, 297

XhtmlTbody, 295

XhtmlTd, 291
XhtmlText, 301, 302

XhtmlTfoot, 296

XhtmlTh, 290
XhtmlThead, 294

XhtmlTitle, 276

XhtmlTr, 292
XmlAttlist, 234

XmlComment, 226
XmlContent, 306

XmlCref, 231, 232

XmlData, 225
XmlDecl, 229

XmlDoctype, 227

XmlDocument, 236
XmlElement, 237

XmlEref, 232

XmlGe, 239
XmlInclude, 309

XmlMime, 298

XmlPe, 240
XmlPi, 228

XmlProcessor, 308
XmlReader, 241

XmlRoot, 235

XmlSection, 233
XmlTag, 223

XmlText, 224
XmlTree, 243
XneCond, 244

Xref, 183
XsmDocument, 248
XsmNode, 245

XsmReader, 247

XsoInfo, 249

year, 194

year-day, 195

