Volume 1 / Writer's Reference

AFNIX Writing System

Revision 3.8

Amaury C. Darsch

Visit http://www.afnix.org

Copyright (C) 2023 by Amaury C. Darsch

Chapter 1. Getting started
1. First contact

Writing structure

Nameset and bindings

Special forms

Built-in objects

Class and instance

Miscellaneous features

Threads

The interpreter object

© X NSO W

Chapter 2. Literals
1. Integer number

2. Relatif number
3. Real number

4. Complex number
5. Character

6. String

7.

Regular expression

Chapter 3. Container objects
1. Cons object

2. List object

3. Vector object
4. Set object

5. Iteration

6.

Special Objects

Chapter 4. Classes
1. Class object
2. Instance
3. Inheritance

Chapter 5. Advanced concepts
1. Exception

Nameset

Delayed Evaluation

Enumeration

Logger

Interpreter

Librarian object

Librarian object

File resolver

© X NSO W

Contents

iii

N =

13
14
16
18

19
19
21
22
23
24
26
27

31
31
32
32
32
33
34

35
35
36
39

43
43
44
45
45
46
46
48
49
50

10.
11.
12.
13.

Thread operations
Shared objects
Synchronization
Function expression

Appendix A. Installation Guide

1.

2.
3.
4.

Software distribution
Installation procedure
Running AFNIX
Special features

Appendix B. Maintainer notes

1.

CU

The distribution tree
Configuration and setup
Compilation

Building the package
Specific makefile rules

Appendix C. Release notes

1.

O N O N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

Index

Release 3.8
Release 3.7
Release 3.6
Release 3.5
Release 3.4
Release 3.3
Release 3.2
Release 3.1
Release 2.9
Release 2.8
Release 2.7
Release 2.6
Release 2.5
Release 2.4
Release 2.3
Release 2.2
Release 2.1
Release 2.0
Release 1.9
Release 1.8
Release 1.7
Release 1.6
Release 1.5
Release 1.4
Release 1.3
Release 1.2
Release 1.1
Release 1.0

CONTENTS

20
51
52
%)

99
99
99
62
62

65
65
65
66
67
67

69
69
69
69
70
70
71
71
71
72
73
74
74
74
(6]
76
7
7
78
78
79
80
81
81
82
83
84
84
85

87

CHAPTER 1

Getting started

AFNIX is a multi-threaded functional engine with dynamic symbol bindings that sup-
ports the object oriented paradigm. The system features a state of the art runtime engine
that runs on both 32 and 64 bits platforms. The system specification offers a rich syntax
that makes the functional programming a pleasant activity. When the interpreter is used
interactively, text is entered on the command line and executed when a complete and valid
syntactic object has been constructed. Alternatively, the interpreter can execute a source
file or operates with an input stream.

AFNIX is a comprehensive set of application clients, modules and services. The orig-
inal distribution contains the core interpreter with additional clients like the compiler, the
librarian and the debugger. The distribution contains also a rich set of modules that are
dedicated to a particular domain. The basic modules are the standard i/o module, the sys-
tem module and the networking module. Above modules are services. A service is another
extension of the engine that provides extra functionalities with help of several modules. This
hierarchy is strictly enforced in the system design and provides a clear functional separation
between application domain. When looking for a particular feature, it is always a good idea
to think in term of module or service functionality.

AFNIX operates with a set of keywords and predicates. The engine has a native
Unicode database. The set of standard objects provides support for integers, real num-
bers, strings, characters and boolean. Various containers like list, vector, hash table, bitset,
and graphs are also available in the core distribution. The syntax incorporates the con-
cept of lambda expression with explicit closure. Symbol scope limitation within a lambda
expression is a feature called gamma expression. Form like notation with an easy block dec-
laration is also another extension with respect to other system. The object model provides
a single inheritance mechanism with dynamic symbol resolution. Special features include
instance parenting, class binding instance inference and deference. Native class derivation
and method override is also part of the object model with fixed class objects and forms.
The engine incorporates an original regular expression engine with group matching, exact or
partial match and substitution. An advanced exception engine is also provided with native
run-time compatibility.

AFNIX implements a true multi-threaded engine with an automatic object protection
mechanism against concurrent access. A read and write locking system which operates with
the thread engine is also built in the core system. The object memory management is
automatic inside the core interpreter. Finally, the engine is written in C4++ and provides
runtime compatibility with it. Such compatibility includes the ability to instantiate C++
classes, use virtual methods and raise or catch exceptions. A comprehensive programming
interface has been designed to ease the integration of foreign libraries.

1. First contact

The fundamental syntactic object is a form . A form is parsed and immediately executed
by the interpreter. A form is generally constructed with a function name and a set of
arguments. The process of executing a form is called the evaluation . The next example

1

G W N

H O © 00O Utk Wl

= o=

2 1. GETTING STARTED

illustrates one of the simplest form which is supported by the engine. This form simply
displays the message hello world .

1.1. Hello world. At the interpreter prompt, a form is constructed with the special
object println . The unique argument is a string which is placed between double quotes.

(axi) println "Hello World"
Hello World

The interpreter can be invoked to enter one or several forms interactively. The form can
also be placed in a text file and the interpreted called to execute it. The als is the referred
extension for a text file, but it can be anything. A simple session which executes the above
file — assuming the original file is called hello.als — is shown below.

zsh> axi hello.als
Hello World

In interactive mode, the interpreter waits for a form. When a form is successfully con-
structed, it is then immediately executed by the engine. Upon completion, the interpreter
prompt is displayed and the interpreter is ready to accept a new form. A session is termi-
nated by typing ctrl-d . Another way to use the engine is to call the compiler client called
azc , and then invoke the interpreter with the compiled file. The interpreter assumes the
.axc extension for compiled file and will automatically figure out which file to execute when
a file name is given without an extension.

zsh> axc hello.als
zsh> axi hello.axc
Hello World

zsh> axi hello
Hello World

The order of search is determined by a special system called the file resolver . Its
behavior is described in a special chapter of this manual.

1.2. Interpreter command. The interpreter can be invoked with several options, a
file to execute and some program arguments. The [h] option prints the various interpreter
options.

zsh> axi -h

usage: axi [options] [file] [arguments]
[h] print this help message

[v] print system version

[m] enable the start module

[i path] add a resolver path

[e mode] force the encoding mode

[f assert] enable assertion checks
[f nopath] do not set initial path
[f noseed] do not seed random engine
[f seed] seed random engine

The [v] option prints the interpreter version and operating system. The [f] option
turns on or off some additional options like the assertion checking. The use of program
arguments is illustrated later in this chapter. The [i] option adds a path to the interpreter
resolver. Several [i] options can be specified. The order of search is determined by the
option order. As mentioned earlier, the use of the resolver combined with the librarian is
described in a specific chapter. If the initial file name to execute contains a directory path,
such path is added automatically to the interpreter resolver path unless the [nopath] option
is specified.

N OOl W N

DU W N

1. FIRST CONTACT 3

Binding Description

backspace Erase the previous character
delete Erase at the cursor position
insert Toggle insert with in-place
ctrl-a Move to the beginning of the line
ctrl-e Move to the end of the line
ctrl-u Clear the input line

ctrl-k Clear from the cursor position
ctrl-1 Refresh the line editing
Binding Description

left Move the cursor to the left
right Move the cursor to the right
up Move up in the history list
down Move down in the history list

1.3. Interactive line editing. Line editing capabilities is provided when the inter-
preter is used interactively. Error messages are displayed in red if the terminal supports
colors. Various accelerators are bound to the terminal as indicated in the table below.

The arrow are also bound to their usual functions. Note that when using the history, a
multi-line command editing access is provided by the interpreter.

1.4. Command line arguments. The interpreter command line arguments are stored
in a vector called argv which is part of the interp object. A complete discussion about object
and class is covered in the class object chapter . At this time, it is just necessary to note that
a method is invoked by a name separated from the object symbol name with a semicolon.
The example below illustrates the use of the vector argument.

argv.als
print the argument length and the first one

println "argument length: " (interp:argv:length)
println "first argument : " (interp:argv:get 0)
zsh> axi argv.als hello world

2

hello

1.5. Loading a source file. The interpreter object provides also the load method
to load a file. The argument must be a valid file path or an exception is raised. The load
method returns nil . When the file is loaded, the interpreter input, output and error streams
are used. The load operation reads one form after another and executes them sequentially.

load the source file demo.als
(axi) interp:load "demo.als"

load the compiled file demo.axc
(axi) interp:load "demo.axc"

load whatever is found

(axi) interp:load "demo"

The load method operates with the help of the interpreter resolver. By default the
source file extension is als . If the file has been compiled, the axc extension can be used
instead. This force the interpreter to load the compiled version. If you are not sure, or do
not care about which file is loaded, the extension can be omitted. Without extension, the
compiled file is searched first. If it is not found the source file is searched and loaded.

U W N

© 0D U A WN -

4 1. GETTING STARTED

1.6. The compiler. The client axc is the cross compiler . It generates a binary file
that can be run across several platforms. The [h] option prints the compiler options.

usage: axc [options] [files]

[h] print this help message

[v] print version information

[i] path add a path to the resolver
[e mode] force the encoding mode

One or several files can be specified on the command line. The source file is searched
with the help of the resolver. The resolver [i] option can be used to add a path to the
resolver.

2. Writing structure

The structure of file is a succession of valid syntactic objects separated by blank lines
or comments. During the compilation or the execution process, each syntactic object is
processed one after another in a single pass. Reserved keywords are an integral part of the
writing systems. The association of symbols and literal constitutes a form . A form is the
basic execution block in the writing system. When the form uses reserved keyword, it is
customary to refer to it as a special form .

2.1. Character set and comments. The writing system operates with the standard
Unicode character set. Comments starts with the character # . All characters are consumed
until the end of line. Comments can be placed anywhere in the source file. Comments entered
during an interactive session are discarded.

2.2. Native objects. The writing system operates mostly with objects. An object is
created upon request or automatically by the engine when a native representation is required.
To perform this task, several native objects, namely Boolean for boolean objects, Integer ,
Relatif for integer numbers, Real for floating-point number, Complez> for complex number,
Byte , Character and String for character or string manipulation are built inside the engine.
Most of the time, a native object is built implicitly from its lexical representation, but an
explicit representation can also be used.

const boolean true

const integer 1999

const relatif 1234567890R
const complex 1.0+1.0i
const real 2000.0

const string "afnix"

const char ’a’

trans symbol "hello world"
trans symbol 2000

The const and trans reserve keywords are used to declare a new symbol. A symbol is
simply a binding between a name and an object. Almost any standard characters can be
used to declare a symbol. The const reserved keyword creates a constant symbol and returns
the last evaluated object. As a consequence, nested const constructs are possible like trans b
(const a 1) . The trans reserved keyword declare a new transient symbol. When a symbol is
marked transient, the object bound to the symbol can be changed while this is not possible
with a constant symbol. Eventually, a symbol can be destroyed with the special form unref
. It is worth to note that it is the symbol which is destroyed and not the object associated
with it.

2.3. Stop and resume parsing. The parsing process is stopped in the presence of the
<« character (Unicode U425C0). The parsing operation is resumed with the » character
(Unicode U+25B6). Such mechanism is useful when dealing with multi line statements.
This mechanism is also a good example of Unicode based control characters.

ULk W N -

2. WRITING STRUCTURE 5

2.4. Forms. An implicit form is a single line command. When a command is becoming
complex, the use of the standard form notation is more readable. The standard form uses
the (and) characters to start and close a form. A form causes an evaluation . When a
form is evaluated, each symbol in the form are evaluated to their corresponding internal
object. Then the interpreter treats the first object of the form as the object to execute and
the rest is the argument list for the calling object. The use of form inside a form is the
standard way to perform recursive evaluation with complex expressions.

const three (+ 1 2)

This example defines a symbol which is initialized with the integer 3, that is the result
of the computation (+ 1 2) . The example shows also that a Polish notation is used for
arithmetic. If fact, + is a built-in operator which causes the arguments to be summed (if
possible). Evaluation can be nested as well as definition and assignation. When a form is
evaluated, the result of the evaluation is made available to the calling form. If the result is
obtained at the top level, the result is discarded.

const b (trans a (+ 1 2))
assert a 3
assert b 3

This program illustrates the mechanic of the evaluation process. The evaluation is done
recursively. The (+ 1 2) form is evaluated as 3 and the result transmitted to the form
(trans a 8) . This form not only creates the symbol ¢ and binds to it the integer 3, but
returns also 3 which is the result of the previous evaluation. Finally, the form (const b 3) is
evaluated, that is, the symbol b is created and the result discarded. Internally, things are a
little more complex, but the idea remains the same. This program illustrates also the usage
of the assert keyword.

2.5. Lambda expression. A lambda expression is another name for a function. The
term comes historically from Lisp to express the fact that a lambda expression is analog to
the concept of expression found in the lambda calculus. There are various ways to create
a lambda expression. A lambda expression is created with the trans reserved keyword. A
lambda expression takes 0 or more arguments and returns an object. A lambda expression
is also an object by itself When a lambda expression is called, the arguments are evaluated
from left to right. The function is then called and the object result is transmitted to the
calling form. The use of trans vs const is explain later. To illustrate the use of a lambda
expression, the computation of an integer factorial is described in the next example.

declare the factorial function
trans fact (n) (

if (== n 1) 1 (x n (fact (- n 1))))
compute factorial 5
println "factorial 5 = " (fact 5)

This example calls for several comments. First the trans keyword defines a new function
object with one argument called n . The body of the function is defined with the if special
form and can be easily understood. The function is called in the next form when the printin
special form is executed. Note that here, the call to fact produces an integer object, which
is converted automatically by the println keyword.

2.6. Block form. The notation used in the fact program is the standard form notation
originating from Lisp and the Scheme dialect. There is also another notation called the block
form notation with the use of the and characters. A block form is a syntactic notation
where each form in the block form is executed sequentially. The form can be either an
implicit or a regular form. The fact procedure can be rewritten with the block notation as
illustrated below.

TR W N =

U W N =

TR W N =

6 1. GETTING STARTED

declare the factorial procedure
trans fact (n) {
if (== n 1) 1 (*x n (fact (- n 1)))

}
compute factorial 5
println "factorial 5 = " (fact 5)

Another way to create a lambda expression is via the lambda special form. Recall that
a lambda expression is an object. So when such object is created, it can be bounded to a
symbol. The factorial example could be rewritten with an explicit lambda call.

declare the factorial procedure
const fact (lambda (n) (
if (==n 1) 1 (*x n (fact (- n 1)))))
compute factorial 5
println "factorial 5 = " (fact 5)

Note that here, the symbol fact is a constant symbol. The use of const is reserved for
the creation of gamma expression .

2.7. Gamma expression. A lambda expression can somehow becomes very slow dur-
ing the execution, since the symbol evaluation is done within a set of nested call to resolve
the symbols. In other words, each recursive call to a function creates a new symbol set
which is linked with its parent. When the recursion is becoming deep, so is the path to
traverse from the lower set to the top one. There is also another mechanism called gamma
expression which binds only the function symbol set to the top level one. The rest remains
the same. Using a gamma expression can speedup significantly the execution.

declare the factorial procedure
const fact (n) (

if (==n 1) 1 (* n (fact (- n 1))))
compute factorial 5
println "factorial 5 = " (fact 5)

We will come back later to the concept of gamma expression. The use of the reserved
keyword const to declare a gamma expression makes now sense. Since most function defini-
tions are constant with one level, it was a design choice to implement this syntactic sugar.
Note that gamma is a reserved keyword and can be used to create a gamma expression
object. On the other hand, note that the gamma expression mechanism does not work for
instance method. We will illustrate this point later in this book.

2.8. Lambda generation. A lambda expression can be used to generate another
lambda expression. In other word, a function can generate a function, an that capabil-
ity is an essential ingredient of the functional programming paradigm. The interesting part
with lambda expression is the concept of closed variables. In the next example, looking at
the lambda expression inside gen , notice that the argument to the gamma is x while n is
marked in a form before the body of the gamma. This notation indicates that the gamma
should retain the value of the argument n when the closure is created. In the literature, you
might discover a similar mechanism referenced as a closure . A closure is simply a variable
which is closed under a certain context. When a variable is reference in a context without
any definition, such variable is called a free variable . We will see later more programs with
closures. Note that it is the object created by the lambda or the gamma call which is called
a closure .

a gamma which creates a lambda
const gen (n) (
lambda (x) (m) (+ x n))
create a function which add 2 to its argument
const add-2 (gen 2)

6

0O U WN N Ut AW

O UL W N

3. NAMESET AND BINDINGS 7

call add-2 with an argument and check
println "result = " (add-2 3)

In short, a lambda expression is a function with or without closed variables, which works
with nested symbol sets also called namesets . A gamma expression is a function with or
without closed variable which is bounded to the top level nameset. The reserved keyword
trans binds a lambda expression. The reserved keyword const binds a gamma expression.
A gamma expression cannot be used as an instance method.

2.9. Multiple arguments binding. A lambda or gamma expression can be defined
to work with extra arguments using the special args binding. During a lambda or gamma
expression execution, the special symbol args is defined with the extra arguments passed at
the call. For example, a gamma expression with 0 formal argument and 2 actual arguments
has args defined as a cons cell .

const proc-nilp (args) {
trans result O
for (i) (args) (result:+= i)
eval result

}

assert 3 (proc-nilp 1 2)

assert 7 (proc-nilp 1 2 4)

The symbol args can also be defined with formal arguments. In that case, args is defined
as a cons cell with the remaining actual arguments.

check with arguments

const proc-args (a b args) {
trans result (+ a b)
for (i) (args) (result:+= i)
eval result

}

assert 3 (proc-args 1 2)

assert 7 (proc-args 1 2 4)

It is an error to specify formal arguments after args . Multiple args formal definition
are not allowed. The symbol args can also be defined as a constant argument.

check with arguments

const proc-args (a b (const args)) {
trans result (+ a b)
for (i) (args) (result:+= i)
eval result

assert 7 (proc-args 1 2 4)

3. Nameset and bindings

A nameset is a container of bindings between a name and symbolic variable . We use
the term symbolic variable to denote any binding between a name and an object. There are
various ways to express such bindings. The most common one is called a symbol. Another
type of binding is an argument. Despite the fact they are different, they share a set of
common properties, like being settable. Another point to note is the nature of the nameset.
As a matter of fact, there is various type of namesets. The top level nameset is called a global
set and is designed to handle a large number of symbols. In a lambda or gamma expression,
the nameset is called a local set and is designed to be fast with a small number of symbols.
The moral of this little story is to think always in terms of namesets, no matter how it
is implemented. All namesets support the concept of parent binding. When a nameset is
created (typically during the execution of a lambda expression), this nameset is linked with
its parent one. This means that a symbol look-up is done by traversing all nameset from

U W N

8 1. GETTING STARTED

the bottom to the top and stopping when one is found. In term of notation, the current
nameset is referenced with the special symbol ”.” . The parent nameset is referenced with
the special symbol ’..” . The top level nameset is referenced with the symbol ...’

3.1. Symbol. A symbol is an object which defines a binding between a name and
an object. When a symbol is evaluated, the evaluation process consists in returning the
associated object. There are various ways to create or set a symbol, and the different
reserved keywords account for the various nature of binding which has to be done depending
on the current nameset state. One of the symbol property is to be const or not. When a
symbol is marked as a constant, it cannot be modified. Note here that it is the symbol which
is constant, not the object. A symbol can be created with the reserved keywords const or
trans .

3.2. Creating a nameset. A nameset is an object which can be constructed directly
by using the object construction notation. Once the object is created, it can be bounded to
a symbol. Here is a nameset called example in the top level nameset.

create a new nameset called example
const example (nameset .)

bind a symbol in this nameset

const example:hello "hello"

println example:hello

3.3. Qualified name. In the previous example, a symbol is referenced in a given
nameset by using a qualified name such like example:hello . A qualified name defines a
path to access a symbol. The use of a qualified name is a powerful notation to reference an
object in reference to another object. For example, the qualified name .:hello refers to the
symbol hello in the current nameset. The qualified name ...:hello refers to the symbol hello
in the top level nameset. There are other use for qualified names, like method call with an
instance.

3.4. Symbol binding. The trans reserved keyword has been shown in all previous
example. The reserved keyword trans creates or set a symbol in the current nameset. For
example, the form trans a 1 is evaluated as follow. First, a symbol named « is searched in
the current nameset. At this stage, two situations can occur. If the symbol is found, it is
set with the corresponding value. If the symbol is not found, it is created in the current
nameset and set. The use of qualified name is also permitted — and encouraged — with trans

The exact nature of the symbol binding with a qualified name depends on the partial
evaluation of the qualified name. For example, trans example:hello 1 will set or create a
symbol binding in reference to the example object. If erxample refers to a nameset, the
symbol is bound in this nameset. If example is a class, hello is bounded as a class symbol.
In theory, there is no restriction to use trans on any object. If the object does not have a
symbol binding capability, an exception is raised. For example, if n is an integer object,
the form trans n:i 1 will fail. With 3 or 4 arguments, trans defines automatically a lambda
expression. This notation is a syntactic sugar. The lambda expression is constructed from
the argument list and bounded to the specified symbol. The rule used to set or define the
symbol are the same as described above.

create automatically a lambda expression
trans min (x y) (if (K x y) x y)

=W N =

N O Ut W N

4. SPECIAL FORMS 9

3.5. Constant binding. The const reserved keyword is similar to trans , except that
it creates a constant symbol . Once the symbol is created, it cannot be changed. This
constant property is hold by the symbol itself. When trying to set a constant symbol, an
exception is raised. The reserved keyword const works also with qualified names. The rules
described previously are the same. When a partial evaluation is done, the partial object
is called to perform a constant binding. If such capability does not exist, an exception is
raised. With 3 or 4 arguments, const defines automatically a gamma expression. Like trans
the rule are the same except that the symbol is marked constant.

create automatically a gamma expression
const max (x y) (if > xy) x y)

3.6. Symbol unreferencing. The unref reserved keyword removes a symbol reference
in a given context. When the context is a nameset, the object associated with the symbol is
detached from the symbol, eventually destroyed with the symbol removed from the nameset.

create a symbol number
const x 1

unreference it

unref x

3.7. Arguments. An expression argument is similar to a symbol, except that it is used
only with function argument. The concept of binding between a name and an object is still
the same, but with an argument, the object is not stored as part of the argument, but rather
at another location which is the execution stack. An argument can also be constant. On the
other hand, a single argument can have multiple bindings. Such situation is found during
the same function call in two different threads. An argument list is part of the lambda or
gamma expression declaration. If the argument is defined as a constant argument a sub
form notation is used to defined this matter. For example, the maz gamma expression is
given below.

create a gamma expression with const argument
const max (gamma ((const x) (comst y)) (if (> x y) x y))

A special symbols named args is defined during a lambda or gamma expression evalua-
tion with the remaining arguments passed at the time the call is made. The symbol can be
either nil or bound to a list of objects.

const proc-args (a b) {
trans result (+ a b)
for (i) (args) (result:+= i)
eval result
}
assert 3 (proc-args 1 2)
assert 7 (proc-args 1 2 4)

4. Special forms

Special forms provides are reserved keywords which are most of the time imperative
statement, as part of the writing system. Special forms are an integral part of the writing
system and interact directly with the interpreter. In most cases, a special forms returns the
last evaluated object. Most of the special forms are control flow statements.

00 O UL W N =

U W N

H O © 00 Uk WwN

o

10 1. GETTING STARTED

4.1. If special form. The if reserved keyword takes two or three arguments. The first
argument is the boolean condition to check. If the condition evaluates to true the second
argument is evaluated. The form return the result of such evaluation. If the condition
evaluates to false , the third argument is evaluated or nil is returned if it does not exist.
An interesting example which combines the if reserved keyword and a deep recursion is the
computation of the Fibonacci sequence.

const fibo (gamma (n) (
if (< n 2) n (+ (fibo (- n 1)) (fibo (- n 2))))

4.2. While special form. The while reserved keyword takes 2 or 3 arguments. With
2 arguments, the loop is constructed with a condition and a form. With 3 arguments, the
first argument is an initial condition that is executed only once. When an argument acts as
a loop condition, the condition evaluate to a boolean. The loop body is executed as long as
the boolean condition is true. An interesting example related to integer arithmetic with a
while loop is the computation of the greatest common divisor or ged.

const ged (u v) {
while (1= v 0) {
trans r (u:mod v)

vi= I

Note in this previous example the use of the symbol = . The qualified name u:= is in fact
a method call. Here, the integer v is assigned with a value. In this case, the symbol is not
changed. It is the object which is muted. In the presence of 3 arguments, the first argument
is an initialization condition that is executed only once. In this mode, it is important to
note that the loop introduce its own nameset. The loop condition can be used to initialize
a local condition variable.

while (trans valid (is:valid-p)) (valid) {

do something

adjust condition

valid:= (and (is:valid-p) (something-else))
}

4.3. Do special form. The do reserved keyword is similar to the while reserved key-
word, except that the loop condition is evaluated after the body execution. The syntax call
is opposite to the while . The loop can accept either 2 or 3 arguments. With 2 arguments,
the first argument is the loop body and the second argument is the exit loop condition.
With 3 arguments, the first argument is the initial condition that is executed only once.

count the number of digits in a string
const number-of-digits (s) {
const len (s:length)
trans index O
trans count 0O
do {
trans ¢ (s:get index)
if (c:digit-p) (count:++)
} (< (index:++) len)
eval count

}

N O Ut AW N - W N -

O Ut W N

4. SPECIAL FORMS 11

4.4. Loop special form. The loop reserved keyword is another form of loop. It take
four arguments. The first is the initialize form. The second is the exit condition. The third
is the step form and the fourth is the form to execute at each loop step. Unlike the while
and do loop, the loop special form creates its own nameset, since the initialize condition
generally creates new symbol for the loop only.

a simple loop from O to 10
loop (tramns i 0) (< i 10) (i:++) (println i)

A loop can also be designed with a Counter object. In this case, a counter is created
with an initial and final count values. The counter step-p method can then be used to run
the loop

a counter from O to 10

trans cntr (Counter 10)

a simple loop from 1 to 10
loop (cntr:step-p) (println cntr)

In this example, the counter prints from 1 to 10 since the counter is designed to operate
from 0 to 9, and the println function is called after the step-p predicate.

4.5. Switch special form. The switch reserved keyword is a condition selector. The
first argument is the switch selector. The second argument is a list of various value which
can be matched by the switch value. A special symbol called else can be used to match any
value.

return the primary color in a rgb
const get-primary-color (color value) (
switch color (
("red" (return (value:substr 0 2)))
("green" (return (value:substr 2 4)))
("blue" (return (value:substr 4 6)))
))

4.6. Return special form. The return reserved keyword indicates an exceptional
condition in the flow of execution within a lambda or gamma expression. When a return
is executed, the associated argument is returned and the execution terminates. If return is
used at the top level, the result is simply discarded.

initialize a vector with a value
const vector-init (length value) {

treat nil vector first

if (<= length 0) return (Vector)

trans result (Vector)

do (result:add value) (> (length:--) 0)
}

4.7. Eval and protect. The eval reserved keyword forces the evaluation of the object
argument. The reserved keyword ewval is typically used in a function body to return a
particular symbol value. It can also be used to force the evaluation of a protected object .
In many cases, eval is more efficient than return . The protect reserved keyword constructs
an object without evaluating it. Typically when used with a form, protect return the form
itself. It can also be used to prevent a symbol evaluation. When used with a symbol, the
symbol object itself is returned.

const add (protect (+ 1 2))
(eval add)

Note that in the preceding example that the evaluation will return a lambda expression
which is evaluated immediately and which return the integer 3.

0~ O Ul W N

B W N

[

12 1. GETTING STARTED

4.8. Assert special form. The assert reserved keyword check for equality between
the two arguments and abort the execution in case of failure. By default, the assertion
checking is turn off, and can be activated with the command option [f assert] . Needless
to say that assert is used for debugging purpose.

assert true (> 2 0)
assert 0 (- 2 2)
assert "true" (String true)

4.9. Block special form. The block reserved keyword executes a form in a new local
set. The local set is destroyed at the completion of the execution. The block reserved
keyword returns the value of the last evaluated form. Since a new local set is created, any
new symbol created in this nameset is destroyed at the completion of the execution. In
other word, the block reserved keyword allows the creation of a local scope.

trans a 1

block {
assert a 1
trans a (+ 1 1)
assert a 2
assert ..:a 1

}

assert 1 a

5. Built-in objects

Several built-in objects and built-in operators for arithmetic and logical operations are
also integrated in the writing system. The Integer and Real classes are primarily used to
manipulate numbers. The Boolean class is used to for boolean operations. Other built-in
objects include Character and String . The exact usage of these objects is described in the
next chapter.

5.1. Arithmetic operations. Support for the arithmetic operations is provided with
the standard operator notation. Normally, these operators will tolerate various object type
mixing and the returned value will generally be bound to an object that provides the mini-
mum loss of information. Most of the operations are done with the + , -, * and / operators.

5.2. Logical operations. The Boolean class is used to represent the boolean value
true and false . These last two symbols are built-in in the interpreter as constant symbols.
There are also special forms like not , and and or . Their usage is self understandable.

not true
and true (== 1 0)
or (< -10) (>10)

6. CLASS AND INSTANCE 13
Predicate Description
nil-p check nil object
eval-p check evaluation
real-p check real object
regex-p check regex object
object-p check for non nil object
string-p check string object
number-p check number object
method-p check method object
boolean-p check boolean object
integer-p check integer object
character-p check character object
Predicate Description
class-p check class object
thread-p check thread object
promise-p check promise object
lexical-p check lexical object
literal-p check literal object
closure-p check closure object
nameset-p check nameset object
instance-p check instance object
qualified-p check qualified object

5.3. Predicates. A predicate is a function which returns a boolean object. There is
always a built-in predicate associated with a built-in object. By convention, a predicate
terminates with the sequence -p . The nil-p predicate is a special predicate which returns
true if the object is nil. The object-p predicate is the negation of the nil-p predicate.

For example, one can write a function which returns ¢rue if the argument is a number,
that is, an integer or a real number.

return true if the argument is a number
const number-p (n) (
or (integer-p n) (real-p n))

Special predicates for functional and symbolic programming are also built-in in the
engine.

Finally, for each object, a predicate is also associated. For example, cons-p is the
predicate for the Cons object and wvector-p is the predicate for the Vector object. Another
issue related to evaluation, is to decide whether or not an object can be evaluated. The
predicate eval-p which is a special form is designed to answer this question. Furthermore,
the eval-p predicate is useful to decide whether or not a symbol is defined or if a qualified
name can be evaluated.

assert true (eval-p .)
assert false (eval-p an-unknown-symbol)

6. Class and instance

Classes and instances are the fundamental objects that provide support for the object
oriented paradigm. A class is a nameset which can be bounded automatically when an
instance of that class is created. The class model is sloppy. Compared to other systems,
there is no need to declare the data members for a particular class. Data members are created

TR W N

N O Ul W N

ULk W N =

14 1. GETTING STARTED

during the instance construction. An instance can also be created without any reference to
a class. Methods can be bound to the class or the instance or both. An instance can also
be muted during the execution process.

6.1. Class and members. A class is declared with the reserved keyword class . The
resulting object acts like a nameset and it is possible to bind symbol to it.

create a class object
const Circle (class)

const Circle:PI 3.1415926535
access by qualified name
println Circle:PI

In the previous example, the symbol Circle is created as a class object. With the help
of a qualified name, the symbol PI is created inside the class nameset. In this case, the
symbol PI is invariant with respect to the instance object. A form can also be bound to the
class nameset. In both cases, the symbol or the form is accessed with the help of a qualified
name.

6.2. Instances. An instance of a class is created like any built-in object. If a method
called preset is defined for that class, the method is used to initialize the instance.

create a class

const Circle (class)

trans Circle:preset (r) {
const this:radius (r:clomne)

}

create a radius 1 circle

const ¢ (Circle 1)

This example calls for several comments. First the preset lambda expression is bound
to the class. Since preset is a reserved name for the class object, the form is automatically
executed at the instance construction. Second, note that the instance data member radius
is created by the lambda expression and another reserved keyword called this is used to
reference the instance object as it is customary with other programming systems.

6.3. Instance method. When a lambda expression is bound to the class or the in-
stance, that lambda can be invoked as an instance method. When an instance method is
invoked, the instance nameset is set as the parent nameset for that lambda. This is the
main reason why a gamma expression cannot be used as an instance method. Therefore,
the use of the reserved keyword this is not recommended in a gamma expression, although
it is perfectly acceptable to create a symbol with such name.

create a perimeter method
trans Circle:perimeter nil (

* (* 2.0 Circle:PI) this:radius)
call the method with our circle
trans p (c:perimeter)

It must be clear that the perimeter symbol defines a method at the class level. It is
perfectly acceptable to define a methods at the instance level. Such method is called a
specialized method .

7. Miscellaneous features

7.1. Iteration. An iteration facility is provided for some objects known as iterable
objects . The Cons , List and Vector are typical iterable objects. There are two ways to
iterate with these objects. The first method uses the for reserved keyword. The second
method uses an explicit iterator which can be constructed by the object.

W N =

W O U W

U W N =

=W N =

7. MISCELLANEOUS FEATURES 15

compute the scalar product of two vectors
const scalar-product (u v) {

trans result O

for (x y) (u v) (result:+= (* x y))

eval result

}

The for reserved keyword iterate on both object u and v . For each iteration, the
symbol z and y are set with their respective object value. In the example above, the result
is obtained by summing all intermediate products.

test the scalar product function
const vl (Vector 1 2 3)
const v2 (Vector 2 4 6)
(scalar-product vi v2)

The iteration can be done explicitly by creating an iterator for each vectors and advanc-
ing steps by steps.

scalar product with explicit iterators
const scalar-product (u v) {
trans result O
trans u-it (u:iterator)
trans v-it (v:iterator)
while (u:valid-p) {
trans x (u:get-object)
trans y (v:get-object)
result:+= (x x y)
u:next
v:next
}
eval result

}

In the example above, two iterators are constructed for both vectors u and v . The
iteration is done in a while loop by invoking the valid-p predicate. The get-object method
returns the object value at the current iterator position.

7.2. Exception. An ezception is an unexpected change in the execution flow. The
exception model is based on a mechanism which throws the exception to be caught by a
handler. The mechanism is also designed to be compatible with the native implementation.
An exception is thrown with the special form throw . When an exception is thrown, the
normal flow of execution is interrupted and an object used to carry the exception information
is created. Such exception object is propagated backward in the call stack until an exception
handler catch it. The special form try executes a form and catch an exception if one has
been thrown. With one argument, the form is executed and the result is the result of the
form execution unless an exception is caught. If an exception is caught, the result is the
exception object. If the exception is a native one, the result is nil.

try (+ 1 2)

try (throw)

try (throw "hello")

try (throw "hello" "world")

try (throw "hello" "world" "folks")

The exception mechanism is also designed to install an exception handler and eventually
retrieve some information from the exception object. The reserved symbol what can be used
to retrieve some exception information.

protected factorial
const fact (n) {
if (not (integer-p n))
(throw "number-error" "invalid argument")

=W N =

ULk W N =

© 00U A WN -

16 1. GETTING STARTED

if (== n 0) 1 (* n (fact (- n 1)))
}
exception handler
const handler nil {

errorln what:eid ’,’ what:reason
}
(try (fact 5) handler)
(try (fact "hello") handler)

The special symbol what stores the necessary information about the place that generated
the exception. Most of the time, the qualified name what:reason or what:about is used.The
only difference is that what:about contains the file name and line number associated with
the reason that generated the exception.

7.3. Regular Expressions. A regular expression or regezx is an object which is used
to match certain text patterns. Regular expressions are built implicitly by the parser with
the use of the [and] characters. Special class of characters are defined with the help
of the § character. For example, §d is the class of character digits as defined by the
Unicode consortium. Different regular expression can be grouped by region to be matched
as indicated in the example below.

if (== (const re [(dd):(dd)]) "12:31") {
trans hr (re:get 0)
trans mn (re:get 1)

In the previous example, a regular expression object is bound to the symbol re . The
regex contains two groups. The call to the operator == returns true if the regex matches
the argument string. The get method can be used to retrieve the group by index.

7.4. Delayed evaluation. The special form delay creates a special object called a
promise which records the form to be later evaluated. The special form force causes a
promise to be evaluated. Subsequent call with force will produce the same result.

trans y 3

const 1 ((lambda (x) (+ x y)) 1)
assert 4 (force 1)

trans y O

assert 4 (force 1)

8. Threads

The interpreter provides a powerful mechanism which allows the concurrent execution of
forms and the synchronization of shared objects. The engine provides supports the creation
and the synchronization of threads with a native object locking mechanism. During the
execution, the interpreter wait until all threads are completed. A threads is created with
the reserved keyword launch . In the presence of several threads, the interpreter manages
automatically the shared objects and protect them against concurrent access.

shared variable access

const var O

const decr nil (while true (var:= (- var 1)))
const incr nil (while true (var:= (+ var 1)))
const prtv nil (while true (println "value =
start 3 threads

launch (prtv)

launch (decr)

launch (incr)

" var))

DU W N

WO U WN

=W N =

8. THREADS 17

8.1. Form synchronization. Although, the engine provides an automatic synchro-
nization mechanism for reading or writing an object, it is sometimes necessary to control
the execution flow. There are basically two techniques to do so. First, protect a form from
being executed by several threads. Second, wait for one or several threads to complete their
task before going to the next execution step. The reserved keyword sync can be used to
synchronize a form. When a form, is synchronized, the engine guarantees that only one
thread will execute this form.

const print-message (code mesg) (

sync {
errorln "error : " code
errorln "message: " mesg

)

The previous example create a gamma expression which make sure that both the error
code and error message are printed in one group, when several threads call it.

8.2. Thread completion. The other piece of synchronization is the thread completion
indicator. The thread descriptor contains a method called wait which suspend the calling
thread until the thread attached to the descriptor has been completed. If the thread is
already completed, the method returns immediately.

simple flag

const flag false

simple shared tester

const ftest (bval) (flag:= bval)
run the thread and wait

const thr (launch (ftest true))
thr:wait

assert true flag

This example is taken from the test suites. It checks that a boolean variable is set in
a thread. Note the use of the wait method to make sure the thread has completed before
checking for the flag value. It is also worth to note that wait is one of the method which
guarantees that a thread result is valid. Another use of the wait method can be made with
a vector of thread descriptors when one wants to wait until all of them have completed.

shared vector of threads descriptors

const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

8.3. Condition variable. A condition variable is another mechanism to synchronize
several threads. A condition variable is modeled with the Condvar object. At construction,
the condition variable is initialized to false . A thread calling the wait method will block
until the condition becomes true . The mark method can be used by a thread to change
the state of a condition variable and eventually awake some threads which are blocked on
it. The use of condition variable is particularly recommended when one need to make sure
a particular thread has been doing a particular task.

8.4. Asynchronous evaluation. The special form future creates a special object
called a future which is used to evaluate an object asynchronously. The evalution starts
with the help of the force special form. The sync special form can be used to synchronise
with the future.

trans f (future 1)
force f

18 1. GETTING STARTED

9. The interpreter object

The interpreter can also be seen as an object. As such, it provides several special symbols
and forms. For example, the symbol argv is the argument vector. The symbol library is an
interpreter method that loads a library. A complete description of the interpreter object is
made in a special chapter of this book.

W N

[V)

TR W N =

CHAPTER 2

Literals

This chapters covers in detail the literals objects used to manipulate numbers and
strings. First the integer, relatif, real and complex numbers are described. There is a broad
range of methods for these three objects that support numerical computation. As a second
step, string and character objects are described. Many examples show the various operations
which can be used as automatic conversion between one type and another. Finally, the
boolean object is described. These objects belongs to the class of literal objects , which
are objects that have a string representation. A special literal object known as reqular
expression or regex is also described at the end of this chapter.

1. Integer number

The fundamental number representation is the Integer . The integer is a 64 bits signed
2’s complement number. Even when running with a 32 bits machine, the 64 bits repre-
sentation is used. If a larger representation is needed, the Relatif object might be more
appropriate. The Integer object is a literal object that belongs to the number class.

1.1. Integer format. The default literal format for an integer is the decimal notation.
The minus sign (without blank) indicates a negative number. Hexadecimal and binary
notations can also be used with prefix 0r and 0b . The underscore character can be used
to make the notation more readable.

const a 123
trans b -255
const h Oxff
const b Ob1111_1111

Integer number are constructed from the literal notation or by using an explicit integer
instance. The Integer class offers standard constructors. The default constructor creates
an integer object and initialize it to 0. The other constructors take either an integer, a real
number, a character or a string.

const a (Integer)
const b (Integer 2000)
const ¢ (Integer "23")

When the hexadecimal or binary notation is used, care should be taken to avoid a
negative integer. For example, 0x_8000-0000-0000-0000 is the smallest negative number.
This number exhibits also the strange property to be equal to its negation since with 2’s
complement, there is no positive representation.

1.2. Integer arithmetic. Standard arithmetic operators are available as built-in op-
erators. The usual addition + , multiplication * and division / operate with two arguments.
The subtraction - operates with one or two arguments.

+ 34

*

/

> www
N >

19

0O U WN

i~}

B W N

20 2. LITERALS

As a built-in object, the Integer object offers various methods for built-in arithmetic
which directly operates on the object. The following example illustrates these methods.

trans i O
i:++

[e e A S N
Nk L +FN* L+
NN~ DD

NN~ -

As a side effect, these methods allows a const symbol to be modified. Since the methods
operates on an object, they do not modify the state of the symbol. Such methods are called
mutable methods .

const i O
i:=1

1.3. Integer comparison. The comparison operators works the same. The only dif-
ference is that they always return a Boolean result. The comparison operators are namely
equal == , not equal /= | less than < , less equal <=, greater > and greater equal >= .
These operators take two arguments.

01
01

Like the arithmetic methods, the comparison operators are supported as object methods.
These methods return a Boolean object.

1

e e

1
0

1.4. Integer calculus. Armed with all these functions, it is possible to develop a
battery of functions operating with numbers. As another example, we revisit the Fibonacci
sequence as demonstrated in the introduction chapter. Such example was terribly slow,
because of the double recursion. Another method suggested by Springer and Friedman uses
two functions to perform the same job.

const fib-it (gamma (n accl acc2) (

if (== n 1) acc2 (fib-it (- n 1) acc2 (+ accl acc2))))
const fiboi (gamma (n) (

if (==n 0) 0 (fib-it n 0 1)))

This later example is by far much faster, since it uses only one recursion. Although, it
is no the fastest way to write it, it is still an elegant way to write complex functions.

1.5. Other Integer methods. The Integer class offers other convenient methods.
The odd-p and even-p are predicates. The mod take one argument and returns the modulo
between the calling integer and the argument. The abs methods returns the absolute value
of the calling integer.

DU W N

ULk W N =

TR W N =

N O Ut W

2. RELATIF NUMBER 21

:even-p
:odd-p
:mod 2

= -1

:abs
:to-string

e He e B

The Integer object is a literal object and a number object . As a literal object, the to-
string and to-literal methods are provided to obtain a string representation for the integer
object. Although the to-string method returns a string representation of the calling integer,
the to-literal method returns a parsable string. Strictly speaking for an integer, there is no
difference between a string representation and a literal representation. However, this is not
true for other objects.

(axi) const i 0x123

(axi) println (i:to-string)
291

(axi) println (i:to-literal)
291

As a number object, the integer number can also be represented in hexadecimal format.
The to-hexa and to-hexa-strign methods are designed to obtained such representation. In
the first form, the to-hexa method return a literal hexadecimal string representation with
the appropriate prefix while the second one does not.

(axi) const i 0x123

(axi) println (i:to-hexa)

0x123

(axi) println (i:to-hexa-string)
123

2. Relatif number

A relatif or big number is an integer with infinite precision. The Relatif class is similar
to the Integer class except that it works with infinitely long number. The relatif notation
uses a 1 or R suffix to express a relatif number versus an integer one. The Relatif object is
a literal object that belongs to the number class. The predicate associated with the Relatif
object is relatif-p .

const a 123R

trans b -255R

const c OxffR

const d Ob1111_1111R
const e (Relatif)
const f (Relatif 2000)
const g (Relatif "23")

2.1. Relatif operations. Most of the Integer class operations are supported by the
Relatif object. The only difference is that there is no limitation on the number size. This
naturally comes with a computational price. An amazing example is to compute the biggest
know prime Mersenne number. The world record exponent is 6972593. The number is
therefore:

const i 1R
const m (- (i:shl 6972593) 1)

This number has 2098960 digits. You can use the println method if you wish, but you
have been warned...

[V)

0O Uk WN =

WO U R WN =

[

22 2. LITERALS

3. Real number

The real class implements the representation for floating point number. The internal
representation is machine dependent, and generally follows the double representation with
64 bits as specified by the IEEE 754-1985 standard for binary floating point arithmetic. All
integer operations are supported for real numbers. The Real object is a literal object that
belongs to the number class.

3.1. Real format. The parser supports two types of literal representation for real
number. The first representation is the dotted decimal notation. The second notation is the
scientific notation .

const a 123.0 # a positive real
const b -255.5 # a negative real
const ¢ 2.0e3 # year 2000.0

Real number are constructed from the literal notation or by using an explicit real in-
stance. The Real class offers standard constructors. The default constructor creates a real
number object and initialize it to 0.0. The other constructors takes either an integer, a real
number, a character or a string.

3.2. Real arithmetic. The real arithmetic is similar to the integer one. When an inte-
ger is added to a real number, that number is automatically converted to a real. Ultimately,
a pure integer operation might generate a real result.

+ 1999.0 1 # 2000.0
+ 1999.0 1.0 # 2000.0
- 2000.0 1 # 1999.0
- 2000.0 1.0 # 1999.0
* 1000 2.0 # 2000.0
* 1000.0 2.0 # 2000.0
/ 2000.0 2 # 1000.0
/ 2000.0 2.0 # 1000.0

Like the Integer object, the Real object has arithmetic built-in methods.

trans r 0.0 # 0.0
4+ # 1.0

I
+H*
o
o

HHHHH
N 00 W
[eNeoNeoNeoNe]

00 Ol -
cocoo

NN~ DD

NN R
.. . ooo0o0oOo

[eNeoNoNe]

L T T o T B T B T I T
H HHH

N¥ L+ LI+

3.3. Real comparison. The comparison operators works as the integer one. As for
the other operators, an implicit conversion between an integer to a real is done automatically.

== 2000 2000 # true
1= 2000 1999 # true

Comparison methods are also available for the Real object. These methods take either
an integer or a real as argument.

r:=1.0 # 1.0
r:== 1.0 # true
r:!'= 0.0 # true

™)

W O U W

©

O © 00O Ul W N

=

4. COMPLEX NUMBER 23

4. Complex number

A complex number is another type of number used to solve compex operations that are
not possible with rela number. A complex number is made of a real part and an imaginary
part. When the rela part is ommitted, one has a pure imginary number. The standard
notation is to write the imaginary part with the letter ¢ giving a litteral notation that
ressembles an arithmetic operation.

trans z 1.0+1.01i
trans z (Complex 1.0 1.0)
trans z "1.0i"

4.1. Complex operations. Most of the real class operations are supported by the
Complex object including addition, substraction and multiplication. A special case arises
with the square root of negative number.

4.2. A complex example. One of the most interesting point with functional pro-
gramming language is the ability to create complex function. For example let’s assume we
wish to compute the value at a point z of the Legendre polynomial of order n . One of
the solution is to encode the function given its order. Another solution is to compute the
function and then compute the value.

legendre polynomial order O and 1
const 1p-0 (gamma (x) 1)
const 1lp-1 (gamma (x) x)
legendre polynomial of order n
const lp-n (gamma (n) (
if > n1l) {
const lp-n-1 (1p-n (- n 1))
const 1lp-n-2 (1p-n (- n 2))
gamma (x) (n lp-n-1 lp-n-2)
/ (= (x (x (- (*x2n) 1) x
(1p-n-1 x))
(* (-n 1) (Ipn-2 x))) n)
} (if (== n 1) 1p-1 1p-0)
)

generate order 2 polynomial
const 1p-2 (lp-n 2)

print 1p-2 (2)

println "1p2 (2) = " (1p-2 2)

Note that the computation can be done either with integer or real numbers. With
integers, you might get some strange results anyway, but it will work. Note also how the
closed variable mechanism is used. The recursion capture each level of the polynomial until
it is constructed. Note also that we have here a double recursion.

4.3. Other real methods. The real numbers are delivered with a battery of functions.
These include the trigonometric functions, the logarithm and couple others. Hyperbolic
functions like sinh , cosh , tanh , asinh , acosh and atanh are also supported. The square
root sqrt method return the square root of the calling real. The floor and ceiling returns
respectively the floor and the ceiling of the calling real.

const rO 0.0 # 0.0
const rl1 1.0 # 1.0

const r2 2.0 # 2.0

const rn -2.0 # -2.0

const rq (r2:sqrt) # 1.414213
const pi 3.1415926 # 3.141592
rq:floor # 1.0

rq:ceiling # 2.0

rn:abs # 2.0

rl:log # 0.0

[oNe]

11
12
13
14
15
16
17

W N =

no

24 2. LITERALS

r0:exp
rO0:sin
r0:cos
rO:tan .
rO:asin # 0.0

pi:floor # 3.0

pi:ceiling # 4.0

4.4. Accuracy and formatting. Real numbers are not necessarily accurate, nor pre-
cise. The accuracy and precision are highly dependent on the hardware as well as the nature
of the operation being performed. In any case, never assume that a real value is an exact one.
Most of the time, a real comparison will fail, even if the numbers are very close together.
When comparing real numbers, it is preferable to use the ?= operator. Such operator result
is bounded by the internal precision representation and will generally return the desired
value. The real precision is an interpreter value which is set with the set-absolute-precision
method while the get-absolute-precision returns the interpreter precision. There is also a
set-relative-precision and get-relative-precision methods used for the definition of relative
precision. By default, the absolute precision is set to 0.00001 and the relative precision is
set to 1.0E-8.

interp:set-absolute-precision 0.0001
const r 2.0

const s (r:sqrt) # 1.4142135

(s:7= 1.4142) # true

Real number formatting is another story. The format method takes a precision argument
which indicates the number of digits to print for the decimal part. Note that the format
command might round the result as indicated in the example below.

const pi 3.1415926535
pi:format 3 # 3.142

If additional formatting is needed, the String fill-left and fill-right methods can be used.

const pi 3.1415926535 # 3.1415926535
const val (pi:format 4) # 3.1416
println (val:fill-left 0’ 9) # 0003.1416

4.5. Number object. The Integer , Relatif and Real objects are all derived from
the Number object which is a Literal object. As such, the predicate number-p is the right
mechanism to test an object for a number. The class also provides the basic mechanism to
format the number as a string. For integer and relatif, the hexadecimal representation can
be obtained by the to-hexa and to-hexa-string methods. For integer and real numbers, the
format method adjusts the final representation with the precision argument as indicated
before. It is worth to note that a formatted integer gets automatically converted into a real
representation.

5. Character

The Character object is another built-in object. A character is internally represented
by a quad by using a 31 bit representation as specified by the Unicode standard and ISO
10646.

TR W N

DU A W N

D TR W N

5. CHARACTER 25

5.1. Character format. The standard quote notation is used to represent a character.
In that respect, there is hare a substantial difference with other functional language where
the quote protect a form.

const LAO1 ’a’ # the character a
const ND10 ’0’ # the digit O

All characters from the Unicode codeset are supported by the AFNIX engine. The
characters are constructed from the literal notation or by using an explicit character instance.
The Character class offers standard constructors. The default constructor creates a null
character. The other constructors take either an integer, a character or a string. The string
can be either a single quoted character or the literal notation based on the U+ notation
in hexadecimal. For example, U+/40 is the @ character while U+3A3 is the sigma capital
letter X .

const nilc (Character) # null character
const a (Character ’a’) # a

const 0 (Character 48) # 0

const mul (Character "*") # *

const div (Character "U+40") # @

5.2. Character arithmetic. A character is like an integer, except that it operates in
the range 0 to Ox7TFFFFFFF. The character arithmetic is simpler compared to the integer
one and no overflow or underflow checking is done. Note that the arithmetic operations take
an integer as an argument.

+ 23’ 1 # b’
-9 1 # °8?

Several Character object methods are also provided for arithmetic operations in a way
similar to the Integer class.

trans ¢ ’a’ # ’a’
c:++ # b’
trans ¢ ’9’ # ’9’
c:—— # 8’
c:+ 1 # 9’
c:—- 9 # 0’

5.3. Character comparison. Comparison operators are also working with the Char-
acter object. The standard operators are namely equal == | not equal /= | less than < |
less equal <=, greater > and greater equal >= . These operators take two arguments.

== ’3’ b’ # false
=0’ ’1’ # true

5.4. Other character methods. The Character object comes with additional meth-
ods. These are mostly conversion methods and predicates. The to-string method returns
a string representation of the calling character. The to-integer method returns an integer
representation the calling character. The predicates are alpha-p , digit-p , blank-p , eol-p ,
eos-p and nil-p .

const LAO1 ’a’ # ’a’
const ND10 ’0’ # ’0’
LAOl:to-string # "a"
LAOl:to-integer # 97
LAO1:alpha-p # true
ND10:digit-p # true

W N -

DU W N

=W N

W N =

26 2. LITERALS

6. String

The String object is one of the most important built-in object in the AFNIX engine.
Internally, a string is a vector of Unicode characters . Because a string operates with Unicode
characters, care should be taken when using composing characters.

6.1. String format. The standard double quote notation is used to represent literally
a string. Standard escape sequences are also accepted to construct a string.

const hello "hello"

Any literal object can be used to construct a string. This means that integer, real,
boolean or character objects are all valid to construct strings. The default constructor
creates a null string. The string constructor can also takes a string.

const nils (String) # ""
const one (String 1) # "1"

const a (String ’a’) # "a
const b (String true) # "true"

6.2. String operations. The String object provides numerous methods and opera-
tors. The most common ones are illustrated in the example below. The length methods
returns the total number of characters in the string object. It is worth to note that this
number is not necessarily the number of printed characters since some characters might be
combining characters used, for example, as diacritics. The non-combining-length method
might be more adapted to get the number of printable characters.

const h "hello"

:length # 5

:get 0 # ’h’

;== "world" # false

I= "yorld" # true

" world" # "hello world"

=g =g =g =g = 5

T+

The sub-left and sub-right methods return a sub-string, given the position index. For
sub-left , the index is the terminating index, while sub-right is the starting index, counting
from 0.

example of sub-left method
const msg "hello world"
msg:sub-left 5 # "hello"
msg:sub-right 6 # "world"

The strip , strip-left and strip-right are methods used to strip blanks and tabs. The
strip method combines both strip-left and strip-right .

example of strip method
const str " hello world "
println (str:strip) # "hello world"

The split method returns a vector of strings by splitting the string according to a break
sequence. By default, the break sequence is the blank, tab and newline characters. The
break sequence can be one or more characters passed as one single argument to the method.

example of split method

const str "hello:world"

const vec (str:split ":" # "hello" "world")
println (vec:length) # 2

The fill-left and fill-right methods can be used to fill a string with a character up to a
certain length. If the string is longer than the length, nothing happens.

=W N

[

[V)

W O U W

7. REGULAR EXPRESSION 27

example of fill-left method

const pi 3.1415926535 # 3.1415926535
const val (pi:format 4) # 3.1416
val:fill-left ’0’ 9 # 0003.1416

6.3. Conversion methods. The case conversion methods are the standard to-upper
and to-lower methods. The method operates with the internal Unicode database. As a
result, the conversion might change the string length. Other conversion methods related to
the Unicode representation are also available. These are rather technical, but can be used
to put the string in a normal form which might be suitable for comparison. Such conversion
always uses the Unicode database normal form representation.

example of case conversion
const str "hello world"
println (str:to-upper) # HELLO WORLD

6.4. String hash value. The hashid method is a method that computes the hash
value of a string. The value depends on the target machine and will change between a 32
bits and a 64 bits machine. Example ezample 0203.als illustrates the computation of a hash
value for our favorite test string.

test our favorite string
const hello "hello world"
hello:hashid # 1054055120

The algorithm used by the engine is shown as an example below. As a side note, it is
recommended to print the shift amount in the program. One may notice, that the value
remains bounded by 24. Since we are zoring the final value, it does illustrate that the
algorithm is design for a 32 bits machine. With a 64 bits machine the algorithm is slightly
modified to use the extra space. This also means that the hashid value is not portable across
platforms.

compute string hashid
const hashid (s) {
const len (s:length)
trans cnt O
trans val O
trans sht 17
do {
compute the hash value
trans i (Integer (s:get cnt))
val:= (val:xor (i:shl sht))
adjust shift index
if (< (sht:-= 7) 0) (sht:+= 24)
} (< (cnt:++) len)
eval val

}

7. Regular expression

A regular expression or regex is a special literal object designed to describe a character
string in a compact form with regular patterns. A regular expression provides a convenient
way to perform pattern matching and filed extraction within a character string.

W N =

28 2. LITERALS

Character Description

$a matches any letter or digit

$b matches any blank characters

$c matches any combining alphanumeric
$d matches any digit

$e matches eol, cr and eos

$1 matches any lower case letter

$n matches eol or cr

$s matches any letter

$u matches any upper case letter

$v matches any valid afnix constituent
$w matches any word constituent

$x matches any hexadecimal characters

7.1. Regex syntax. A regular expression is defined with a special Regexr object. A
regular expression can be built implicitly or explicitly with the use of the Regex object. The
regex syntax uses the [and | characters as block delimiters. When used in a source file,
the parser automatically recognizes a regex and built the object accordingly. The following
example shows two equivalent methods for the same regex expression.

syntax built-in regex

(== [$d+] 2000) # true

explicit built-in regex

(== (Regex "$d+") 2000) # true

In its first form, the [and / characters are used as syntax delimiters. The lexical analyzer
automatically recognizes this token as a regex and built the equivalent Regex object. The
second form is the explicit construction of the Regex object. Note also that the [and /
characters are also used as regex block delimiters.

7.2. Regex characters and meta-characters. Any character, except the one used
as operators can be used in a regex. The § character is used as a meta-character — or control
character — to represent a particular set of characters. For example, [hello world] is a regex
which match only the "hello world” string. The [$d+] regex matches one or more digits.
The following meta characters are built-in in the regex engine.

The uppercase version is the complement of the corresponding lowercase character set.

A character which follows a § character and that is not a meta character is treated as a
normal character. For example $/ is the [character. A quoted string can be used to define
character matching which could otherwise be interpreted as control characters or operator.
A quoted string also interprets standard escaped sequences but not meta characters.

(== [$d+] 2000) # true
(== ["$d+"] 2000) # false

Combining alphanumerical characters can generate surprising result when used with
Unicode string. Combining alphanumeric characters are alphanumeric characters and non
spacing combining mark as defined by the Unicode consortium. In practice, the combining
marks are the diacritics used with regular letter, such like the accents found in the western
languages. Because the writing system uses a canonical decomposition for representing the
Unicode string, it turns out that the printed string is generally represented with more bytes,
making the string length longer than it appears.

7.3. Regex character set. A character set is defined with the < and > characters.
Any enclosed character defines a character set. Note that meta characters are also inter-
preted inside a character set. For example, <$d+-> represents any digit or a plus or minus.

W N

W N -

3]

7. REGULAR EXPRESSION 29

Operator Description

* match 0 or more times
+ match 1 or more times
? match 0 or 1 time

— alternation

If the first character is the “character in the character set, the character set is complemented
with regards to its definition.

7.4. Regex blocks and operators. The [and] characters are the regex sub-expressions
delimiters. When used at the top level of a regex definition, they can identify an implicit
object. Their use at the top level for explicit construction is optional. The following example
is strictly equivalent.

simple real number check

const real-1 (Regex "$d*.$d+")

another way with [] characters
const real-2 (Regex "[$d*.$d+]")

Sub-expressions can be nested — that’s their role — and combined with operators. There
is no limit in the nesting level.

pair of digit testing
(== [$d3d[$d$d]+] 2000) # true
(== [dd[dd]+] 20000) # false

The following unary operators can be used with single character, control characters and
sub-expressions.

Alternation is an operator which work with a secondary expression. Care should be
taken when writing the right sub-expression. For example the following regex [§d—hello] is
equivalent to [[$d—hjello] . In other word, the minimal first sub-expression is used when
compiling the regex.

7.5. Grouping. Groups of sub-expressions are created with the (and) characters.
When a group is matched, the resulting sub-string is placed on a stack and can be used later.
In this respect, the regex engine can be used to extract sub-strings. The following example
extracts the month, day and year from a particular date format: [(dd):($d3d):($ddd3d)]
. This regex assumes a date in the form mm:dd:yyyy .

if (== (const re [(dd):(dd)]) "12:31") {
trans hr (re:get 0)
trans mn (re:get 1)

}

Grouping is the mechanism to retrieve sub-strings when a match is successful. If the
regex is bound to a symbol, the get method can be used to get the sub-string by index.

7.6. Regex object. Although a regex can be built implicitly, the Regex object can
also be used to build a new regex. The argument is a string which is compiled during
the object construction. A Regex object is a literal object. This means that the to-string
method is available and that a call to the printin special form will work directly.

const re (Regex "$d+")
println re # $d+
println re:to-string # [$d+]

UL W N -

30 2. LITERALS

7.7. Regex operators. The == and /= operators are the primary operators to per-
form a regex match. The == operator returns true if the regex matches the string argument
from the beginning to the end of string. Such operator implies the begin and end of string
anchoring. The < operator returns true if the regex matches the string or a sub-string or
the string argument.

7.8. Regex methods. The primary regex method is the get method which returns
by index the sub-string when a group has been matched. The length method returns the
number of group match.
if (== (const re [(dd):(dd)]1) "12:31") {

re:length # 2
re:get 0 # 12

re:get 1 # 31
}

The match method returns the first string which is matched by the regex.

const regex [$d+]
regex:match "Happy new year 2000" # 2000

The replace method any occurrence of the matching string with the string argument.

const regex [$d+]
regex:replace "Hello year 2000" "3000" # hello year 3000

7.9. Argument conversion. The use of the Regexr operators implies that the argu-
ments are evaluated as literal object. For this reason, an implicit string conversion is made
during such operator call. For example, passing the integer 12 or the string 7127 is strictly
equivalent. Care should be taken when using this implicit conversion with real numbers.

D TR W N

CHAPTER 3

Container objects

This chapter covers the standard container objects and more specifically, iterable objects
such like Cons , List and Vector . Special objects like Fifo , Queue and Bitset are treated
at the end of this chapter. Although the name container is sufficient enough to describe the
object functionality, it is clear that a container is more than a simple object reservoir. In
particular, the choice of a container object is often associated to the underlying algorithm
used to store the object. For example, a vector is appropriate when storing by index is
important. If the order of storage must be preserved, then a fifo object might be more
appropriate. In any case, the choice of a container is always a question of compromise, so
is the implementation.

1. Cons object

Originally, a Cons object or cons cell have been the fundamental object of the Lisp or
Scheme machine. The cons cell is the building block for list and is similar in some respect
to the cons cell found in traditional functional programming language. A Cons object is a
simple element used to build linked list. The cons cell holds an object and a pointer to the
next cons cell. The cons cell object is called car and the next cons cell is called the cdr .
This original Lisp notation is maintained here for the sake of tradition. Although a cons
cell is the building block for single linked list, the cell itself is not a list object. When a list
object is needed, the List double linked list object might be more appropriate.

1.1. Cons cell constructors. The default constructor creates a cons cell those car is
initialized to the nil object. The constructor can also take one or several objects.

const nil-cons (Cons)
const lst-cons (Cons 1 ’a’ "hello")

The constructor can take any kind of objects. When all objects have the same type,
the result list is said to be homogeneous . If all objects do not have the same type, the
result list is said to be heterogeneous . List can also be constructed directly by the parser.
Since all internal forms are built with cons cell, the construction can be achieved by simply
protecting the form from being interpreted.

const blist (protect ((1) ((2) ((3)))))

1.2. Cons cell methods. A Cons object provides several methods to access the car
and the cdr of a cons cell. Other methods allows access to a list by index.

const ¢ (Cons "hello" "world")
c:length # 2

c:get-car # "hello"

c:get-cadr # "world"

c:get 0 # "hello"

c:get 1 # "world"

The set-car method set the car of the cons cell. The add method adds a new cons cell
at the end of the cons list and set the car with the specified object.

31

U W N =

D U W N

32 3. CONTAINER OBJECTS

2. List object

The List object provides the facility of a double-link list. The List object is another
example of iterable object . The List object provides support for forward and backward
iteration.

2.1. List construction. A list is constructed like a cons cell with zero or more argu-
ments. Unlike the cons cell, the List can have a null size.

const nil-list (List)
const dbl-list (List 1 ’a’ "hello")

2.2. List methods. The List object methods are similar the Cons object. The add
method adds an object at the end of the list. The insert method inserts an object at the
beginning of the list.

const list (List "hello" "world")
list:length # 2

list:get O # "hello"

list:get 1 # "world"

list:add "folks" # "hello" "world" "folks"

3. Vector object

The Vector object provides the facility of an index array of objects. The Vector object
is another example of iterable object . The Vector object provides support for forward and
backward iteration.

3.1. Vector construction. A vector is constructed like a cons cell or a list. The
default constructor creates a vector with 0 objects.

const nil-vector (Vector)
const obj-vector (Vector 1 ’a’ "hello")

3.2. Vector methods. The Vector object methods are similar to the List object. The
add method appends an object at the end of the vector. The set method set a vector position
by index.

const vec (Vector "hello" "world")

vec:length # 2

vec:get 0 # "hello"

vec:get 1 # "world"

vec:add "folks" # "hello" "world" "folks"
vec:set 0 "bonjour" # "bonjour" "world" "folks"

4. Set object

The Set object provides the facility of an object container. The Set object is another
example of iterable object . The Set object provides support for forward iteration. One of
the property of a set is that there is only one object representation per set. Adding two
times the same object results in one object only.

4.1. Set construction. A set is constructed like a vector. The default constructor
creates a set with 0 objects.

const nil-set (Set)
const obj-set (Set 1 ’a’ "hello")

[V)

Tk W N

DU W N

[V)

DU W N

5. ITERATION 33

4.2. Set methods. The Set object methods are similar to the Vector object. The add
method adds an object in the set. If the object is already in the set, the object is not added.
The length method returns the number of elements in the set.

const set (Set "hello" "world")
set:get-size # 2
set:add "folks" # "hello" "world" "folks"

5. Iteration

When an object is iterable , it can be used with the reserved keyword for . The for
keyword iterates on one or several objects and binds associated symbols during each step of
the iteration process. All iterable objects provides also the method iterator which returns
an iterator for a given object. The use of iterator is justified during backward iteration,
since for only perform forward iteration.

5.1. Function mapping. Given a function func , it is relatively easy to apply this
function to all objects of an iterable object. The result is a list of successive calls with the
function. Such function is called a mapping function and is generally called map .

const map (obj func) {
trans result (Cons)
for (car) (obj) (result:link (func car))
eval result

}

The link method differs from the add method in the sense that the object to append is
set to the cons cell car if the car and cdr is nil.

5.2. Multiple iteration. Multiple iteration can be done with one call to for . The
computation of a scalar product is a simple but illustrative example.

compute the scalar product of two vectors
const scalar-product (u v) {

trans result O

for (x y) (u v) (result:+= (* x y))

eval result

Note that the function scalar-product does not make any assumption about the object
to iterate. One could compute the scalar product between a vector a list for example.

const u (Vector 1 2 3)
const v (List 2 3 4)
scalar-product u v

5.3. Conversion of iterable objects. The use of an iterator is suitable for direct
conversion between one object and another. The conversion to a vector can be simply
defined as indicted below.

convert an iterable object to a vector
const to-vector (obj) {

trans result (Vector)

for (i) (obj) (result:add i)

eval result

}

= O © 000Uk WN =

= o

O © 00O U WN

[

© 00D U A WN -

34 3. CONTAINER OBJECTS

5.4. Explicit iterator. An explicit iterator is constructed with the iterator method.
At construction, the iterator is reset to the beginning position. The get-object method
returns the object at the current iterator position. The nexrt advances the iterator to its
next position. The valid-p method returns ¢rue if the iterator is in a valid position. When the
iterator supports backward operations, the prev method move the iterator to the previous
position. Note that Cons objects do not support backward iteration. The begin method
reset the iterator to the beginning. The end method moves the iterator the last position.
This method is available only with backward iterator.

reverse a list

const reverse-list (obj) {
trans result (List)
trans itlist (obj:iterator)
itlist:end
while (itlist:valid-p) {

result:add (itlist:get-object))

itlist:prev

eval result

}

6. Special Objects

The engine incorporates other container objects. To name a few, such objects are the
Queue , Bitset or Fifo objects.

6.1. Queue object. A queue is a special object which acts as container with a fifo
policy . When an object is placed in the queue, it remains there until it has been dequeued.
The Fifo and Queue objects are somehow similar, with the fundamental difference that the
queue is a blocking.

create a queue with objects
const q (Queue 2)

:push "hello"

:push "world"

rempty-p # false

:length # 2

dequeue some object

:pop # hello

:pop # world

rempty-p # true

Q0,0 #.0,9,0,0

6.2. Bitset object. A bit set is a special container for bit. A bit set can be constructed
with a specific size. When the bit set is constructed, each bit can be marked and tested by
index. Initially, the bitset size is null.

create a bit set by size
const bs (Bitset 8)

bitset-p bs # true

check, mark and clear
assert false (bs:marked-p 0)
bs:mark 0

assert true (bs:marked-p 0)
bs:clear 0O

assert false (bs:marked-p 0)

=W N =

© 0D U A WN -

CHAPTER 4

Classes

This chapter covers the class model and its associated operations. The class model
is slightly different compared to traditional one because dynamic symbol bindings do not
enforce to declare the class data members. A class is an object which can be manipulated
by itself. Such class is said to belongs to a group of meta class as described later in this
chapter. Once the class concept has been detailed, the chapter moves to the concept of
instance of that class and shows how instance data members and functions can be used.
The chapter terminates with a description of dynamic class programming.

1. Class object

A class object is simply a nameset which can be replicated via a construction mechanism.
A class is created with the special form class . The result is an object of type Class which
supports various symbol binding operations.

1.1. Class declaration and bindings. A new class is an object created with the
reserved keyword class . Such class is an object which can be bound to a symbol.

const Color (class)

Because a class acts like a nameset, it is possible to bind directly symbols with the
qualified name notation.

const Color (class)

const Color:RED-FACTOR 0.75
const Color:BLUE-FACTOR 0.75
const Color:GREEN-FACTOR 0.75

When a data is defined in the class nameset, it is common to refer it as a class data
member . A class data member is invariant over the instance of that class. When the data
member is declared with the const reserved keyword, the symbol binding is in the class
nameset.

1.2. Class closure binding. A lambda or gamma expression can be define for a class.
If the class do not reference an instance of that class, the resulting closure is called a class
method of that class. Class methods are invariant among the class instances. The standard
declaration syntax for a lambda or gamma expression is still valid with a class.

const Color:get-primary-by-string (color value) {

trans val "Ox"

val:+= (switch color (
("red" (value:substr 1 3))
("green" (value:substr 3 5))
("blue" (value:substr 5 7))

))
Integer val

}

The invocation of a class method is done with the standard qualified name notation.

35

3]

= O © 000U R WN -

= =

no

00~ O UL W N =

©

36 4. CLASSES

Color:get-primary-by-string "red" "#23c4eb"
Color:get-primary-by-string '"green" "#23c4e5"
Color:get-primary-by-string "blue" "#23c4eb"

1.3. Class symbol access. A class acts as a nameset and therefore provides the
mechanism to evaluate any symbol with the qualified name notation.

const Color:RED-VALUE "#££0000"
const Color:print-primary-colors (color) {
println "red color " (
Color:get-primary-color "red" color)
println "green color " (
Color:get-primary-color "green" color)
println "blue color "
Color:get-primary-color "blue" color)

print the color components for the red color
Color:print-primary-colors Color:RED-VALUE

2. Instance

An instance of a class is an object which is constructed by a special class method called a
constructor . If an instance constructor does not exist, the instance is said to have a default
construction. An instance acts also as a nameset. The only difference with a class, is that
a symbol resolution is done first in the instance nameset and then in the instance class. As
a consequence, creating an instance is equivalent to define a default nameset hierarchy.

2.1. Instance construction. By default, a instance of the class is an object which
defines an instance nameset. The simplest way to define an anonymous instance is to create
it directly.

const i ((class))
const Color (class)
const red (Color)

The example above define an instance of an anonymous class. If a class object is bound
to a symbol, such symbol can be used to create an instance of that class. When an instance
is created, the special symbol named this is defined in the instance nameset. This symbol
is bounded to the instance object and can be used to reference in an anonymous way the
instance itself.

2.2. Instance initialization. When an instance is created, the engine looks for a
special lambda expression called preset . This lambda expression, if it exists, is executed
after the default instance has been constructed. Such lambda expression is a method since
it can refer to the this symbol and bind some instance symbols. The arguments which are
passed during the instance construction are passed to the preset method.

const Color (class)

trans Color:preset (red green blue) {
const this:red (Integer red)
const this:green (Integer green)
const this:blue (Integer blue)

create some default colors

const Color:RED (Color 255 0 0)

const Color:GREEN (Color 0 255 0)
const Color:BLUE (Color O O 255)
const Color:BLACK (Color O O 0)

const Color:WHITE (Color 255 255 255)

= O © 00U R WN =

= o

DT W N

3]

0 O ULk W N

2. INSTANCE 37

In the example above, each time a color is created, a new instance object is created.
The constructor is invoked with the this symbol bound to the newly created instance. Note
that the qualified name this:red defines a new symbol in the instance nameset. Such symbol
is sometimes referred as an instance data member . Note as well that there is no ambiguity
in resolving the symbol red . Once the symbol is created, it shadows the one defined as a
constructor argument.

2.3. Instance symbol access. An instance acts as a nameset. It is therefore possible
to bind locally to an instance a symbol. When a symbol needs to be evaluated, the instance
nameset is searched first. If the symbol is not found, the class nameset is searched. When
an instance symbol and a class symbol have the same name, the instance symbol is said to
shadow the class symbol. The simple example below illustrates this property.

const ¢ (class)
const c:a 1
const i (c)
const j (c)

const i:a 2

class symbol access
println c:a

shadow symbol access
println i:a

non shadow access
println j:a

When the instance is created, the special symbol meta is bound in the instance nameset
with the instance class object. This symbol can therefore be used to access a shadow symbol.

const ¢ (class)
const i (c)
const c:a 1
const i:a 2

println i:a
println i:meta:a

The symbol meta must be used carefully, especially inside an initialization since it might
create an infinite recursion as shown below.

const ¢ (class)
trans c:preset nil (const i (this:meta))
const i (c)

2.4. Instance method. When lambda expression is defined within the class or the
instance nameset, that lambda expression is callable from the instance itself. If the lambda
expression uses the this symbol, that lambda is called an instance method since the symbol
this is defined in the instance nameset. If the instance method is defined in the class nameset,
the instance method is said to be global , that is, callable by any instance of that class. If the
method is defined in the instance nameset, that method is said to be local and is callable by
the instance only. Due to the nature of the nameset parent binding, only lambda expression
can be used. Gamma expressions will not work since the gamma nameset has always the
top level nameset as its parent one.

const Color (class)

class constructor

trans Color:preset (red green blue) {
const this:red (Integer red)
const this:green (Integer green)
const this:blue (Integer blue)

}

const Color:RF 0.75

10
11
12
13
14
15
16
17
18
19
20

W O U W=

O U W N

DU W N

TR W N =

38 4. CLASSES

const Color:GF 0.75

const Color:BF 0.75

this method returns a darker color

trans Color:darker nil {
trans 1lr (Integer (max (this:red:* Color:RF) 0))
trans lg (Integer (max (this:green:* Color:GF) 0))
trans 1b (Integer (max (this:blue:* Color:BF) 0))
Color 1r 1g 1b

}

get a darker color than yellow

const yellow (Color 255 255 0)

const dark-yellow (yellow:darker)

2.5. Instance operators. Any operator can be defined at the class or the instance
level. Operators like == or /= generally requires the ability to assert if the argument is of
the same type of the instance. The global operator == will return true if two classes are
the same. With the use of the meta symbol, it is possible to assert such equality.

this method checks that two colors are equals
trans Color:== (color) {
if (== Color color:meta) {
if (!= this:red color:red) (return false)
if (!= this:green color:green) (return false)
if (!= this:blue color:blue) (return false)
eval true
} false
}
create a new yellow color
const yellow (Color 255 255 0)
(yellow:== (Color 255 255 0)) # true

The global operator == returns true if both arguments are the same, even for classes.
Method operators are left open to the user.

2.6. Complex number example. As a final example, a class simulating the behavior
of a complex number is given hereafter. The interesting point to note is the use of the
operators. As illustrated before, the class uses uses a default method method to initialize
the data members.

class declaration

const Complex (class)

constructor

trans Complex:preset (re im) {
trans this:re (Real re)
trans this:im (Real im)

}

The constructor creates a complex object with the help of the real part and the imagi-
nary part. Any object type which can be bound to a Real object is acceptable.

class mutators

trans Complex:set-re (x) (trans this:re (Real re))
trans Complex:set-im (x) (trans this:im (Real im))
class accessors

trans Complex:get-re nil (Real this:re)

trans Complex:get-im nil (Real this:im)

The accessors and the mutators simply provides the interface to the complex number
components and perform a cloning of the calling or returned objects.

complex number module
trans Complex:module nil {
trans result (Real (+ (* this:re this:re)
(* this:im this:im)))
result:sqrt

[V)

0N U WN -

3. INHERITANCE 39

}

complex number formatting

trans Complex:format nil {
trans result (String this:re)
result:+= "+i"
result:+= (String this:im)

}

The module and format are simple methods. Note the the complex number formatting
is arbitrary here.

complex predicate
const complex-p (c) (
if (instance-p c¢) (== Complex c:meta) false)

The complez-p predicate is the perfect illustration of the use of the meta reserved
symbol. However, it shall be noted that the meta-comparison is done if and only if the
calling argument is an instance.

operators

trans Complex:== (c) (
if (complex-p c) (and (this:re:== c:re)
(this:im:== c:im)) (
if (number-p c) (and (this:re:== c)

(this:im:zero-p)) false))
trans Complex:= (c) {
if (complex-p c) {
this:re:= (Real c:re)
this:im:= (Real c:im)
return this
}
this:re:= (Real c)
this:im:= 0.0
return this
}
trans Complex:+ (c) {
trans result (Complex this:re this:im)
if (complex-p c) {
result:re:+= c:re
result:im:+= c:im
return result
}
result:re:+= (Real c)
eval result

}

The operators are a little tedious to write. The comparison can be done with a complex
number or a built-in number object. The assignation operator creates a copy for both the
real and imaginary part. The summation operator is given here for illustration purpose.

3. Inheritance

Inheritance is the mechanism by which a class or an instance inherits methods and data
member access from a parent object. The class model is based on a single inheritance model.
When an instance object defines a parent object, such object is called a super instance .
The instance which has a super instance is called a derived instance . The main utilization
of inheritance is the ability to reuse methods for that super instance.

3.1. Derivation construction. A derived object is generally defined within the preset
method of that instance by setting the super data member. The super reserved keyword is
set to nil at the instance construction. The good news is that any object can be defined as
a super instance, including built-in object.

=W N

DT W N

DU W N

40 4. CLASSES

const ¢ (class)
const c:preset nil {
trans this:super 0

}

In the example above, an instance of class ¢ is constructed. The super instance is with
an integer object. As a consequence, the instance is derived from the Integer instance.
Another consequence of this scheme is that derived instance do not have to be built from
the same base class.

3.2. Derived symbol access. When an instance is derived from another one, any
symbol which belongs to the super instance can be access with the use of the super data
member. If the super class can evaluate a symbol, that symbol is resolved automatically by
the derived instance.

const ¢ (class)
const i (c)
trans i:a 1
const j (c)
trans j:super i
println j:a

When a symbol is evaluated, a set of search rules is applied. The engine gives the
priority to the class nameset vs the super instance. As a consequence, a class data member
might shadow a super instance data member. The rule associated with a symbol evaluation
can be summarized as follow.

Look in the instance nameset.

Look in the class nameset.

Look in the super instance if it exists.
Look in the base object.

3.3. Instance re-parenting. The ability to set dynamically the parent instance make
the object model an ideal candidate to support instance re-parenting . In this model, a
change in the parent instance is automatically reflected at the instance method call.

const ¢ (class)

const i (¢)

trans i:super O

println (i:to-string) # 0

trans i:super "hello world"

println (i:to-string) # hello world

In this example, the instance is originally set with an Integer instance parent. Then
the instance is re-parented with a String instance parent. The call to the to-string method
illustrates this behavior.

3.4. Instance re-binding. The ability to set dynamically the instance class is another
powerful feature of the class model. In this approach, the instance meta class can be changed
dynamically with the mute method. Furthermore, it is also possible to create initially an
instance without any class binding, which is later muted.

create a point class
const point (class)
point class
trans point:preset (x y) {
trans this:x x
trans this:y y
b
create an empty instance
const p (Instance)
bind the point class

11

© 00 O Uk W

TR W N =

00 O UL W N =

3. INHERITANCE 41

p:mute point 1 2

In this example, when the instance is muted, the preset method is called automatically
with the extra arguments.

3.5. Instance inference. The ability to instantiate dynamically inferred instance is
offered by the instance model. An instance b is said to be inferred by the instance a when
the instance a is the super instance of the instance b . The instance inference is obtained by
binding the infer symbol to a class. When an instance of that class is created, the inferred
instance is also created.

base class A

const A (class)

inferred class B

const B (class)

const A:infer B

create an instance from A
const x (A)

assert B (x:meta)

assert A (x:super:meta)

In this example, when the instance is created, the inferred instance is also created and
returned by the instantiation process. The preset method is only called for the inferred
instance if possible or the base instance if there is no inferring class. Because the base preset
preset method is not called automatically, the inferred method is responsible to do such call.

trans B:preset (x y) {
trans this:xb x
trans this:yb y
if (== A this:super:meta) (this:super:preset x y)

}

Because the class can mute from one call to another and also the inferred class, the
preset method call must be used after a discrimination of the meta class has been made as
indicated by the above example.

3.6. Instance deference. In the process of creating instances, one might have a
generic class with a method that attempts to access a data member which is bound to
another class. The concept of class deference is exactly designed for this purpose. With the
help of reserved keyword defer , a class with virtual data member accessors can be bound
to a base class as indicated in the example below.

create the base and defer class

const bc (class)

const dc (class)

bind the base preset method

trans bc:preset nil (const this:y 2)

bind the defer accessor to the base data member
trans dc:get-y nil (eval this:y)

bind the defer class in the base class

const bc:defer dc

create an instance from the base class

const i (bc)

access to the base member with the defer method
assert 2 (i:get-y)

It is worth to note that the class deference is made at the class level. When an instance
of the base class is created, all methods associated with the deferent class are visible from
the base class, thus making the deferent class a virtual interface to the base class.

]

DU W N

CHAPTER 5

Advanced concepts

This chapter covers advanced concepts of the writing system. The first subject is the
exception model. The second subject covers some properties of the namesets in the context
of the interpreter object. The thread sub-system is then described along with the synchro-
nization mechanism. Finally, some notes related to the functional system are given at the
end of this chapter.

1. Exception

An exception is an unexpected change in the execution flow. The exception model
is based on a mechanism which throws the exception to be caught by a handler. The
mechanism is also designed to be compatible with the native ”C++" implementation.

1.1. Throwing an exception. An exception is thrown with the reserved keyword
throw . When an exception is thrown, the normal flow of execution is interrupted and
an object used to carry the exception information is created. Such exception object is
propagated backward in the call stack until an exception handler catch it.

if (not (number-p n))
(throw "type-error" "invalid object found" n)

The example above is the general form to throw an exception. The first argument is the
the exception id . The second argument is the exception reason . The third argument is the
exception object . The exception id and reason are always a string. The exception object
can be any object which is carried by the exception. The reserved keyword throw accepts 0
or more arguments.

throw
throw "type-error"
throw "type-error" "invalid argument"

With 0 argument, the exception is thrown with the exception id set to ”user-exception”.
With one argument, the argument is the exception id. With 2 arguments, the exception
id and reason are set. Within a try block, an exception can be thrown again by using the
exception object represented with the what symbol.

try {

{
println "exception caught and re-thrown"
throw what

1.2. Exception handler. The special form try executes a form and catch an exception
if one has been thrown. With one argument, the form is executed and the result is the result
of the form execution unless an exception is caught. If an exception is caught, the result is
the exception object. If the exception is a native one, the result is nil.

43

DU W N TR W N

0 DU WN -

DU W N

44 5. ADVANCED CONCEPTS

Symbol Description
eid Exception id
name Exception file name
line Exception line number
about Exception extended reason
reason Exception reason
object Exception object
try (+ 1 2)

try (throw)

try (throw "hello")

try (throw "hello" "world")

try (throw "hello" "world" "folks")

In its second form, the ¢ry reserved keyword can accept a second form which is executed
when an exception is caught. When an exception is caught, a new nameset is created and
the special symbol what is bounded with the exception object. In such environment, the
exception can be evaluated.

try (throw "hello")

(eval what:eid)

try (throw "hello" "world")
(eval what:reason)

try (throw "hello" "world" 2000)
(eval what:object)

Exceptions are useful to notify abruptly that something went wrong. With an untyped
language, it is also a convenient mechanism to abort an expression call if some arguments
do not match the expected types.

protected factorial

const fact (n) {
if (not (integer-p n))
(throw "number-error" "invalid argument in fact")
if (==n 0) 1 (* n (fact (- n 1)))

}
try (fact 5) 0
try (fact "hello") O

2. Nameset

A nameset is created with the reserved keyword nameset . Without argument, the
nameset reserved keyword creates a nameset without setting its parent. With one argument,
a nameset is created and the parent set with the argument.

const nset (nameset)
const nset (nameset ...)

2.1. Default namesets. When a nameset is created, the symbol . is automatically
created and bound to the newly created nameset. If a parent nameset exists, the symbol ..
is also automatically created. The use of the current nameset is a useful notation to resolve
a particular name given a hierarchy of namesets.

trans a 1 # 1

block {
trans a (+ a 1) # 2
println ..:a 1 # 1

println a # 1

DU R W N

TR W N

N O Ut W

4. ENUMERATION 45

2.2. Nameset and inheritance. When a nameset is set as the super object of an
instance, some interesting results are obtained. Because symbols are resolved in the nameset
hierarchy, there is no limitation to use a nameset to simulate a kind of multiple inheritance.
The following example illustrates this point.

const cls (class)

const ins (cls)

const ins:super (nameset)

const ins:super:value 2000

const ins:super:hello "hello world "

println ins:hello ins:value # hello world 2000

3. Delayed Evaluation

The engine provides a mechanism called delayed evaluation . Such mechanism permits
the encapsulation of a form to be evaluated inside an object called a promise .

3.1. Creating a promise. The reserved keyword delay creates a promise . When the
promise is created, the associated object is not evaluated. This means that the promise
evaluates to itself.

const a (delay (+ 1 2))
promise-p a # true

The previous example creates a promise and store the argument form. The form is not
yet evaluated. As a consequence, the symbol a evaluates to the promise object.

3.2. Forcing a promise. The reserved keyword force the evaluation of a promise.
Once the promise has been forced, any further call will produce the same result. Note also
that, at this stage, the promise evaluates to the evaluated form.

trans y 3

const 1 ((lambda (x) (+ x y)) 1)
assert 4 (force 1)

trans y O

assert 4 (force 1)

4. Enumeration

Enumeration, that is, named constant bound to an object, can be declared with the
reserved keyword enum . The enumeration is built with a list of literal and evaluated as is.

const e (enum E1 E2 E3)
assert true (enum-p e)

The complete enumeration evaluates to an Enum object. Once built, enumeration item
evaluates by literal and returns an Item object.

assert true (item-p e:E1)
assert "Item" (e:El:repr)

Items are comparable objects. Only items can be compared. For a given item, the
source enumeration can be obtained with the get-enum method.

check for item equality

const il e:El

const 12 e:E2

assert true (il:== il)

assert false (== il i2)

get back the enumeration

assert true (enum-p (il:get-enum))

46 5. ADVANCED CONCEPTS
Symbol Description
argv Command arguments vector
os-name Operating system name
os-type Operating system type
version Full version
loader The interpreter loader
resolver The interpreter resolver
afnix-uri Official uri name

program-name
big-endian-p
64-bits-p-p
major-version
minor-version

Interpreter program name
Machine big endian predicate
Machine size predicate
Major version number

Minor version number

patch-version Patch version number
machine-size The interpreter machine size
5. Logger

The Logger class is a message logger that stores messages in a buffer with a level.
The default level is the level 0. A negative level generally indicates a warning or an error
message but this is just a convention which is not enforced by the class. A high level
generally indicates a less important message. The messages are stored in a circular buffer.
When the logger is full, a new message replace the oldest one. By default, the logger is
initialized with a 256 messages capacity that can be re-sized.

const log (Logger)
assert true (logger-p log)

When a message is added, the message is stored with a time-stamp and a level. The
time-stamp is used later to format a message. The length method returns the number of
logged messages. The get-message method returns a message by index. Because the system
operates with a circular buffer, the get-message method manages the indexes in such way
that the old messages are accessible with the oldest index. For example, even after a buffer
circulation, the index 0 will point to the oldest message. The get-message-level returns the
message level and the get-message-time returns the message posted time.

const mesg (log:get-message 0)

In term of usage, the logger facility can be conveniently used with other derived classes.
The standard i/o module provides several classes that permits to manage logging operations
in a convenient way.

6. Interpreter

The interpreter is by itself a special object with specialized methods which do not have
equivalent using the standard notation. The interpreter is always referred with the special
symbol interp . The following table is a summary of the symbol bound to the interpreter.

The interpreter provides also special methods which can be used to access internal
features that do not operate like standard methods or functions. Some methods are also
designed to modify the internal state of the interpreter. Note that some methods provide a
mechanism to interact at the process level.

6.1. Arguments vector. The interp:argv qualified name evaluates to a vector of
strings. Each argument is stored in the vector during the interpreter initialization.

[V)

N O U W N

[V)

6. INTERPRETER 47

Symbol Description

dup duplicate the interpreter

roll run the interpreter loop
wait Wait for normal threads
load Load a file and execute it
launch Launch a normal thread
daemon Launch a daemon thread
library Load and initialize a library
deserialize Deserialize an object
read-line Get an input stream line
read-credential Get an input credential
get-input-stream Get interpreter input stream
get-output-stream Get interpreter output stream
get-error-stream Get interpreter output stream
wait-kill-signal Wait for a process signal
get-primary-prompt Get primary prompt
get-secondary-prompt Get secondary prompt
set-absolute-precision Set absolute precision
set-relative-precision Set relative precision
get-absolute-precision Get absolute precision
get-relative-precision Get relative precision

zsh> axi hello world
(axi) println (interp:argv:length) # 2
(axi) println (interp:argv:get 0) # hello

6.2. Interpreter version. Several symbols can be used to track the interpreter version
and the operating system. The full version is bound to the interp:version qualified name.
The full version is composed of the major , minor and patch number. The operating system
name is bound to the qualified name interp:os-name . The operating system type is bound
to the interp:os-type .

println "major number : interp:major-version

println "minor number : " interp:minor-version
println "patch number : " interp:patch-version
println "version number : " interp:version
println "system name : " interp:os-name
println "system type : " interp:os-type
println "official uri : " interp:afnix-uri

6.3. Method load. The interp:load method loads and execute a file. The interpreter
interactive command session is suspended during the execution of the file. In case of error
or if an exception is raised, the file execution is terminated. The process used to load a file
is governed by the file resolver . Without extension, a compiled file is searched first and if
not found a source file is searched. The module is loaded only once unless the force flag is
used.

interp:load "module"
interp:load "module" true
interp:load "module" "tag" true

In the first form the module is loaded by name only once. In the second form, the
module is loaded with a force flag set to true . In the third form, the module is given a tag

=W N =

=W N =

W N =

© 00D U WN -

48 5. ADVANCED CONCEPTS

which is used to detect whether or not the module has been loaded. If no tag is given, the
module name is used instead.

6.4. Method library. The interp:library method loads and initializes a library. The
interpreter maintains a list of opened library. Multiple execution of this method for the
same library does nothing. The method returns the library object.

interp:library "afnix-sys"
println "random number: " (afnix:sys:get-random)

6.5. Method dup. The interpreter can be duplicated with the help of the dup method.
Without argument, a clone of the current interpreter is made and a terminal object is
attached to it. When used in conjunction with the roll method, this approach permits to
create an interactive interpreter. The dup method also accepts a terminal object.

duplicate the interpreter
const si (interp:dup)

change the primary prompt
si:set-primary-prompt "(si)"

6.6. Method roll. The interpreter loop can be run with the roll . The loop operates
by reading the interpreter input stream. If the interpreter has been cloned with the help
of the dup method, this method provides a convenient way to operate in interactive mode.
The method is not called loop because it is a reserved keyword and starting a loop is like
having the ball rolling.

duplicate the interpreter
const si (interp:dup)

loop with this interpreter
si:roll

6.7. Method wait. The interpreter can wait for all normal threads to complete. When
invoked, the interpreter monitors all normal threads and wait unil the terminate normally.
This is a standard synchronization method in a multithreaded environment.

create a thread
launch £

wait for completion
interp:wait

7. Librarian object

A librarian file is a special file that acts as a containers for various files. A librarian file
is created with the ax1 — cross librarian —utility. Once a librarian file is created, it can be
added to the interpreter resolver. The file access is later performed automatically by name
with the standard interpreter load method.

7.1. Creating a librarian. The axl utility is the preferred way to create a librarian.
Given a set of files, ax1 combines them into a single one.

zsh: axl -h

usage: axl [options] [files]

[h] print this help message

[v] print version information

[c] create a new librarian

[x] extract from the librarian

[s] get file names from the librarian
[t] report librarian contents

[f] 1ib set the librarian file name

D UL W N

8. LIBRARIAN OBJECT 49

The [c] option creates a new librarian. The librarian file name is specified with the
[£] option.

zsh: axl -c -f librarian.axl file-1.als file-2.als

The previous command combines file-1.als and file-2.als into a single file called
librarian.axl . Note that any file can be included in a librarian.

7.2. Using the librarian. Once a librarian is created, the interpreter [-i] option
can be used to specify it. The [-i] option accepts either a directory name or a librarian
file. Once the librarian has been opened, the interpreter load method can be used as usual.

zsh> axi -i librarian.axl
(axi) interp:load "file-1.als"
(axi) interp:load "file-2.als"

The librarian acts like a file archive . The interpreter file resolver takes care to extract
the file from the librarian when the load method is invoked.

7.3. Librarian contents. The ax1 utility provides the [-t] and [-s] options to look
at the librarian contents. The [-s] option returns all file name in the librarian. The [-t]
option returns a one line description for each file in the librarian.

zsh: axl -t -f librarian.axl
________ 1234 file-1.als
———————— 5678 file-2.als

The one line report contains the file flags, the file size and the file name. The file flags
are not used at this time. One possible use in the future is for example, an auto-load bit or
any other useful things.

7.4. Librarian extraction. The [-x] option permits to extract file from the librarian.
Without any file argument, all files are extracted. With some file arguments, only those
specified files are extracted.

zsh: axl -x -f librarian.axl
zsh: axl -x -f librarian.axl file-1.als

8. Librarian object

The Librarian object can be used as a convenient way to create a collection of files or
to extract some of them.

8.1. Output librarian. The Librarian object is a standard object. Its predicate is
librarian-p . Without argument, a librarian is created in output mode . With a string
argument, the librarian is opened in input mode , with the file name argument. The output
mode is used to create a new librarian by adding file into it. The input mode is created to
read file from the librarian.

create a new librarian
const 1lbr (Librarian)

add a file into it
lbr:add "file-1.als"

write it

lbr:write "librarian.axl"

The add method adds a new file into the librarian. The write method the full librarian
as a single file those name is write method argument.

= o=

0 O ULk W N

= O © 000U R WN -

50 5. ADVANCED CONCEPTS

8.2. Input librarian. With an argument, the librarian object is created in input
mode. Once created, file can be read or extracted. The length method — which also work
with an output librarian — returns the number of files in the librarian. The exists-p predicate
returns true if the file name argument exists in the librarian. The get-names method returns
a vector of file names in this librarian. The extract method returns an input stream object
for the specific file name.

open a librarian for reading

const 1br (Librarian "librarian.axl")

get the number of files

println (1lbr:length)

extract the first file

const is (lbr:extract "file-1.als")

is is an input stream - dump each line
while (is:valid-p) (println (is:readln))

Most of the time, the librarian object is used to extract file dynamically. Because
a librarian is mapped into the memory at the right offset, there is no worry to use big
librarian, even for a small file. Note that any type of file can be used, text or binaries.

9. File resolver

The file resolver is a special object used by the interpreter to resolve file path based on
the search path. The resolver uses a mixed list of directories and librarian files in its search
path. When a file path needs to be resolved, the search path is scanned until a matched is
found. Because the librarian resolution is integrated inside the resolver, there is no need to
worry about file extraction. That process is done automatically. The resolver can also be
used to perform any kind of file path resolution.

9.1. Resolver object. The resolver object is created without argument. The add
method adds a directory path or a librarian file to the resolver. The wvalid method checks
for the existence of a file. The lookup method returns an input stream object associated
with the object.

create a new resolver
const rslv (Resolver)
assert true (resolver-p rslv)
add the local directory on the search path
rslv:add "."
check if file test.als exists
if this is ok - print its contents
if (rslv:valid-p "test.als") {
const is (rslv:lookup "test.als")
while (is:valid-p) (println (is:readln))
}

10. Thread operations

The interpreter is a multi-threaded engine with a native implementation of objects
locking. A thread is started with the reserved keyword launch . The execution is completed
when all threads have terminated. This means that the master thread (i.e the first thread)
is suspended until all other threads have completed their execution.

10.1. Starting a thread. A thread is started with the reserved keyword launch .
The form to execute in a thread is the argument. The simplest thread to execute is the nil
thread.

launch (nil)

B W N =

11. SHARED OBJECTS 51

There exists an alternate mechanism to start a thread with the reserved keyword launch
and a thread object. Such mechanism is used when using deferred thread object creation or
a thread generator object known as a thread set .

10.2. Thread object and result. When a thread terminate, the thread object holds
the result of the last executed form. The thread object is returned by the launch command.
The thread-p predicates returns true if the object is a thread descriptor.

const thr (launch (nil))
println (thread-p thr) # true

The thread result can be obtained with the help of the result method. Although the re-
sult can be accessed at any time, the returned value will be nil until the thread as completed
its execution.

const thr (launch (nil))
println (thr:result) # nilp

Although the engine will ensure that the result is nil until the thread has completed its
execution, it does not mean that it is a reliable approach to test until the result is not nil
. The engine provides various mechanisms to synchronize a thread and eventually wait for
its completion.

10.3. Future object. The future special form provides a simple mechanism to perform
asynchronous evaluation. When a future object is created, the evaluation is pending a call
to the force special form. When the future is complete, the evalution result is available.

create a future
const f (future 1)
do not necessarily evaluates to 1
println (force f)

11. Shared objects

The whole purpose of using a multi-threaded environment is to provide a concurrent
execution with some shared variables. Although, several threads can execute concurrently
without sharing data, the most common situation is that one or more global variable are
accessed — and even changed — by one or more threads. Various scenarios are possible. For
example, a variable is changed by one thread, the other thread just read its value. Another
scenario is one read, multiple write, or even more complicated, multiple read and multiple
write. In any case, the interpreter subsystem must ensure that each objects are in a good
state when such operation do occur. The engine provides an automatic synchronization
mechanism for global objects, where only one thread can modify an object, but several
thread can read it. This mechanism known as read-write locking guarantees that there is
only one writer, but eventually multiple reader. When a thread starts to modify an object,
no other thread are allowed to read or write this object until the transaction has been
completed. On the opposite, no thread is allowed to change (i.e. write) an object, until all
thread which access (i.e. read) the object value have completed the transaction. Because
a context switch can occur at any time, the object read-write locking will ensure a safe
protection during each concurrent access.

11.1. Shared protection access. We illustrate the previous discussion with an in-
teresting example and some variations around it. Let’s consider a form which increase an
integer object and another form which decrease the same integer object. If the integer is
initialized to 0, and the two forms run in two separate threads, we might expect to see the
value bounded by the time allocated for each thread. In other word, this simple example is
a very good illustration of your machine scheduler.

00~ O UL W N =

O © 0D U A WN -

=

DU W N

52 5. ADVANCED CONCEPTS

shared variable access
const var O

increase method

const incr nil {

while true (println "increase: " (var:= (+ var 1)))
}
decrease method
const decr nil {

while true (println "decrease: " (var:= (- var 1)))

¥

start both threads
launch (decr)

launch (incr)

In the previous example, var is initialized to 0. The incr thread increments var while
the decr thread decrements war . Depending on the operating system, the result stays
bounded within a certain range. The previous example can be changed by using the main
thread or a third thread to print the variable value. The end result is the same, except that
there is more threads competing for the shared variable.

shared variable access

const var O

incrementer, decrementer and printer

const incr nil (while true (var:= (+ var 1)))

const decr nil (while true (var:= (- var 1)))

const prtv nil (while true (println "value = " var))
start all threads

launch (decr)

launch (incr)

launch (prtv)

12. Synchronization

Although, there is an automatic synchronization mechanism for reading or writing an
object, it is sometimes necessary to control the execution flow. There are basically two
techniques to do so. First, protect a form from being executed by several threads. Second,
wait for one or several threads to complete their task before going to the next execution
step.

12.1. Form synchronization. The reserved keyword sync can be used to synchronize
a form. When a form, is synchronized, the engine guarantees that only one thread will
execute this form. In the special case of the form beeing a future, the interpreter will block
until the future is complete.

const print-message (code mesg) (

sync {
errorln "error : " code
errorln "message: " mesg

)

The previous example creates a gamma expression which make sure that both the error
code and error message are printed in one group, when several threads call it.

12.2. Thread completion. The other piece of synchronization is the thread comple-
tion indicator. The thread descriptor contains a method called wait which suspend the
calling thread until the thread attached to the descriptor has been completed. If the thread
is already completed, the method returns immediately.

DU R W N B W N =

0 O ULk W N

©

O © 00O U W

=

12. SYNCHRONIZATION 53

simple flag

const flag false

simple tester

const ftest (bval) (flag:= bval)
run the thread and wait

const thr (launch (ftest true))
thr:wait

assert true flag

This example is taken from the test suites. It checks that a boolean variable is set when
started in a thread. Note the use of the wait method to make sure the thread has completed
before checking for the flag value. It is also worth to note that wait is one of the method
which guarantees that a thread result is valid. Another use of the wait method can be made
with a vector of thread descriptors when one wants to wait until all of them have completed.

shared vector of threads descriptors

const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

12.3. Complete example. We illustrate the previous discussion with a complete ex-
ample. The idea is to perform a matrix multiplication. A thread is launched when when
multiplying one line with one column. The result is stored in the thread descriptor. A
vector of thread descriptor is used to store the result.

initialize the shared library

interp:library "afnix-sys"

shared vector of threads descriptors

const thr-group (Vector)

waits until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

The group of threads is represented as a vector. Based on the the previous discussion,
a simple loop that blocks until all threads are completed is designed as a simple gamma
expression.

initializes a matrix with random numbers
const init-matrix (n) {
trans i (Integer 0)
const m (Vector)
do {
trans v (m:add (Vector))
trans j (Integer)
do {
v:add (afnix:sys:get-random)
} (< (G:++) n)
} (< (i:++) n)
eval m

}

The matrix initialization is quite straightforward. The matrix is represented as a vector
of lines. Each line is also a vector of random integer number. It is here worth to note that
the standard math module provides a native implementation of real matrix.

this procedure multiply one line with one column
const mult-line-column (u v) {

assert (u:length) (v:length)

trans result O

for (x y) (u v) (result:+= (* x y))

eval result
b
this procedure multiply two vectors assuming one
is a line and one is a column from the matrix
const mult-matrix (mx my) {

11
12
13
14
15
16
17
18

0 DU WN -

W O U W

©

54 5. ADVANCED CONCEPTS

for (1v) (mx) {
assert true (vector-p lv)
for (cv) (my) {
assert true (vector-p cv)
thr-group:add (launch (mult-line-column 1lv cv))

The matrix vector multiplication is at the heart of the example. Each line-column
multiplication is started into a thread and the thread object is placed into the thread group
vector.

check for some arguments

note the use of errorln method

if (== 0 (interp:argv:length)) {
errorln "usage: axi 0607.als size"
afnix:sys:exit 1

}

get the integer and multiply

const n (Integer (interp:argv:get 0))

mult-matrix (init-matrix n) (init-matrix n)

wait for all threads to complete

wait-all

make sure we have the right number

assert (x n n) (thr-group:length)

The main execution is started with the matrix size as the first argument. Two random
matrices are then created and the multi-threaded multiplication is launched. The main
thread is blocked until all threads in the thread group are completed.

12.4. Condition variable. A condition variable is another mechanism to synchronize
several threads. A condition variable is modeled with the Condvar object. At construction,
the condition variable is initialized to false . A thread calling the wait method will block
until the condition becomes true . The mark method can be used by a thread to change
the state of a condition variable and eventually awake some threads which are blocked on
it. The following example shows how the main thread blocks until another change the state
of the condition.

create a condition variable
const cv (Condvar)
this function runs in a thread - does some
computation and mark the condition variable
const do-something nil {

do some computation

mark the condition
cv:mark

start some computation in a thread
launch (do-something)

block until the condition is changed
cv:wait-unlock

continue here

In this example, the condition variable is created at the beginning. The thread is started
and the main thread blocks until the thread change the state of the condition variable. It is
important to note the use of the wait-unlock method. When the main thread is re-started
(after the condition variable has been marked), the main thread owns the lock associated
with the condition variable. The wait-unlock method unlocks that lock when the main
thread is restarted. Note also that the wait-unlock method reset the condition variable.
if the wait method was used instead of wait-unlock the lock would still be owned by the

[V)

TR W N =

13. FUNCTION EXPRESSION 55

main thread. Any attempt by other thread to call the mark method would result in the
calling thread to block until the lock is released. The Condvar class has several methods
which can be used to control the behavior of the condition variable. Most of them are
related to lock control. The reset method reset the condition variable. The lock and unlock
control the condition variable locking. The mark , wait and wait-unlock method controls
the synchronization among several threads.

13. Function expression

A lambda expression or a gamma expression can be seen like a function object with
no name. During the evaluation process, the expression object is evaluated as well as the
arguments — from left to right — and a result is produced by applying those arguments to the
function object. An expression can be built dynamically as part of the evaluation process.

(axi) println ((lambda (n) (+n 1)) 1)
2

The difference between a lambda expression and a gamma expression is only in the
nameset binding during the evaluation process. The lambda expression nameset is linked
with the calling one, while the gamma expression nameset is linked with the top level
nameset. The use of gamma expression is particularly interesting with recursive functions
as it can generate a significant execution speedup. The previous example will behaves the
same with a gamma expression.

(axi) println ((gamma (n) (+n 1)) 1)
2

13.1. Self reference. When combining a function expression with recursion, the need
for the function to call itself is becoming a problem since that function expression does not
have a name. For this reason, the writing system provides the reserved keyword self that
is a reference to the function expression. We illustrate this capability with the well-known
factorial expression written in pure functional style.

(axi) println ((gamma (n)
(if (<=n 1) 1 (* n (self (- n 1))))) 5
120

The use of a gamma expression versus a lambda expression is a matter of speed. Since
the gamma expression does not have free variables, the symbol resolution is not a concern
here.

13.2. Closed variables. One of the writing system characteristic is the treatment of
free variables . A variable is said to be free if it is not bound in the expression environment or
its children at the time of the symbol resolution. For example, the expression ((lambda (n)
(+ n z)) 1) computes the sum of the argument n with the free variable z . The evaluation
will succeeds if z is defined in one of the parent environment. Actually this example can
also illustrates the difference between a lambda expression and a gamma expression. Let’s
consider the following forms.

trans x 1
const do-print nil {
trans x 2
println ((lambda (n) (+ n x)) 1)

The gamma expression do-print will produce 8 since it sums the argument n bound
to 1, with the free variable which is defined in the calling environment as 2 . Now if

TR W N

TR W N =

=W N =

™)

[\~]

56 5. ADVANCED CONCEPTS

we rewrite the previous example with a gamma expression the result will be one, since the
expression parent will be the top level environment that defines z as 1.

trans x 1
const do-print nil {
trans x 2
println ((gamma (n) (+ n x)) 1)

With this example, it is easy to see that there is a need to be able to determine a
particular symbol value during the expression construction. Doing so is called closing a
variable . Closing a variable is a mechanism that binds into the expression a particular
symbol with a value and such symbol is called a closed variable , since its value is closed under
the current environment evaluation. For example, the previous example can be rewritten to
close the symbol zx .

trans x 1
const do-print nil {
trans x 2
println ((gamma (n) (x) (+ n x)) 1)

Note that the list of closed variable immediately follow the argument list. In this
particular case, the function do-print will print 3 since x has been closed with the value 2
has defined in the function do-print .

13.3. Dynamic binding. Because there is a dynamic binding symbol resolution, it is
possible to have under some circumstances a free or closed variable. This kind of situation
can happen when a particular symbol is defined under a condition.

lambda (n) {
if (<= n 1) (trans x 1)
println (+ n x)

}

With this example, the symbol z is a free variable if the argument n is greater than 1.
While this mechanism can be powerful, extreme caution should be made when using such
feature.

13.4. Lexical and qualified names. The basic forms elements are the lexical and
qualified names. Lexical and qualified names are constructed by the parser. Although the
evaluation process make that lexical object transparent, it is possible to manipulate them
directly.

(axi) const sym (protect lex)
(axi) println (sym:repr)
Lexical

In this example, the protect reserved keyword is used to avoid the evaluation of the
lexical object named lex . Therefore the symbol sym refers to a lexical object. Since a
lexical — and a qualified — object is a also a literal object, the println reserved function will
work and print the object name. In fact, a literal object provides the to-string method that
returns the string representation of a literal object.

(axi) const sym (protect lex)
(axi) println (sym:to-string)
lex

TR W N =

N O U W N

DU W N

13. FUNCTION EXPRESSION 57

13.5. Symbol and argument access. Each nameset maintains a table of symbols. A
symbol is a binding between a name and an object. Eventually, the symbol carries the const
flag. During the lexical evaluation process, the lexical object tries to find an object in the
nameset hierarchy. Such object can be either a symbol or an argument. Again, this process
is transparent, but can be controlled manually. Both lexical and qualified named object
have the map method that returns the first object associated in the nameset hierarchy.

(axi) const obj 0

(axi) const lex (protect obj)
(axi) const sym (lex:map)
(axi) println (sym:repr)
Symbol

A symbol is also a literal object, so the to-string and to-literal methods will return the
symbol name. Symbol methods are provided to access or modify the symbol values. It is
also possible to change the const symbol flag with the set-const method.

(axi) println (sym:get-const)
true

(axi) println (sym:get-object)
0

(axi) sym:set-object true
(axi) println (sym:get-object)
true

A symbol name cannot be modified, since the name must be synchronized with the
nameset association. On the other hand, a symbol can be explicitly constructed. As any
object, the = operator can be used to assign a symbol value. The operator will behaves like
the set-object method.

(axi) const sym (Symbol "symbol")
(axi) println sym

symbol

(axi) sym:= 0

(axi) println (eval sym)

0

13.6. Closure. As an object, the Closure can be manipulated outside the traditional
declarative way. A closure is a special object that holds an argument list, a set of closed
variables and a form to execute. The mechanic of a closure evaluation has been described
earlier. What we are interested here is the ability to manipulate a closure as an object and
eventually modify it. Note that by default a closure is constructed as a lambda expression.
With a boolean argument set to true the same result is obtained. With false, a gamma
expression is created.

(axi) const f (Closure)
(axi) println (closure-p f)
true

This example creates an empty closure. The default closure is equivalent to the trans f
nil nil . The same can be obtained with const f (Closure true) . For a gamma expression,
the following forms are equivalent, const f (Closure false) and const f nil nil . Remember
that it is trans and const that differentiate between a lambda and a gamma expression.
Once the closure object is defined, the set-form method can be used to bind a form.

the simple way

trans f nil (println "hello world")

the complex way

const f (Closure)

f:set-form (protect (println "hello world"))

58 5. ADVANCED CONCEPTS

There are numerous situations where it is desirable to mute dynamically a closure ex-
pression. The simplest one is the closure that mute itself based on some context. With the
use of self , a new form can be set to the one that is executed. Another use is a mech-
anism call advice , where some new computation are inserted prior the closure execution.
Note that appending to a closure can lead to some strange results if the existing closure
expression uses return special forms. In a multi-threaded environment, the ability to change
a closure expression is particularly handy. For example a special thread could be used to
monitor some context. When a particular situation develops, that threads might trigger
some closure expression changes. Note that changing a closure expression does not affect
the one that is executed. If such change occurs during a recursive call, that change is seen
only at the next call.

DU AW N

APPENDIX A

Installation Guide

This chapter describes the installation procedures for the AFNIX writing system dis-
tribution. This chapter explains how to set and compile this distribution.

1. Software distribution

The complete distribution can be downloaded from the AFNIX home page . The result
is a complete source tree that is ready for compilation. The distribution contains also the
documentation as well as examples. The distribution is supported on a variety of platforms
as indicated below that can be either 32 bits or 64 bits machines. The distribution is also
available at the FreeBSD port collection .

Specific processors like the Alpha, M68K, ARM, MIPS, RISCV and SUPERH are also
supported on certain distributions. The PowerPC (PPC) processor has been discontin-
ued. The Solaris SPARC platform has been discontinued. Do not hesitate to contact the
development team for specific processor or platform support.

2. Installation procedure

The core software is written in C+4. It has been successfully built with the latest
GNU GCC 10 . The clang compiler has also been succesfully tested. You will also need the
GNU Make package. With some distributions the command is called gmake . Note that the
Makefile hierarchy is designed to operate safely with the [-j]1 GNU Make option.

2.1. Unpacking the distribution. The distribution is available as a compressed tar
file. Note that the documentation is distributed in a separate file. The following command
unpacks the distribution.

zsh> gzip -d afnix-src-[version].tar.gz
zsh> tar xf afnix-src-[version].tar

2.2. Quick command reference. The list of commands to execute is given in the
example below. A detailed description for each command is given hereafter. The make
world command is the default command that builds the whole tree with the default compiler.

zsh> ./cnf/bin/afnix-setup -o --prefix=/usr/local/afnix
zsh> make status

zsh> make [-j]

zsh> make test

zsh> make install

zsh> make clean

Platform Processor Operating system

Linux X86-32, X86-64 Linux 3.x, 4.x, 5.x

FreeBSD X86-32, X86-64 FreeBSD 8.x, 9.x, 10.x.x,
11.x.x, 12.x.x

Gnu X86-32, X86-64 GNU KBSD, GNU Hurd

59

60 A. INSTALLATION GUIDE
Option Description Default
-h Print a help message n/a
-v Set the verbose mode n/a
-g Set the debug mode yes
-0 Set the optimized mode no
~help Same as -h n/a
—prefix Set the target install direc- | /usr/local
tory
—shrdir Set the shared install direc- | /usr/local/share
tory
—altdir Set the alternate install di- | /usr/local
rectory
—sdknam Set the target sdk by name | platform dependent
—sdkdir Set the target sdk directory | platform dependent
—ccname Set the default compiler platform dependent
—shared Compile and link dynami- | yes
cally
—static Compile and link statically | no
—openmp Enable the optional openmp | no
compilation

With some platforms, the make command should be replaced by the gmake command.
The make status command is optional and can be used to report the internal value contents.
In particular, the version and the installation parameters are reported.

2.3. Configuration. The afnix-setup command can be invoked to setup a particular
configuration. You should have your compiler on your search path. Normally, the command
given below is enough.

zsh> ./cnf/bin/afnix-setup -o --prefix=/usr/local/afnix

This command checks that the target platform can be detected and configured. The
[-o] option configures the compilation in optimized mode. Use the [-g] option can be used
to configure the build process in debug mode. The [--prefix] option sets the installation
directory. Note that the compilation process is done in the distribution tree and that the
[--prefix] option affects only the installation operations. The [-v] option is the verbose
option. Other options are available for fine tuning.

The [prefix] option set the root installation directory. The binary and library instal-
lation directories are derived from it. The [shrdir] set the shared installation directory
which is normally used for the installation of the manual pages on most popular systems.
the [altdir] sets the alternate installation directory. Normally this path should be empty
as it affects the path for the etc directory. This flag should be used when using a prefix to
unusual destination. The [ccname] option can be used to force a particular compiler with
the help of a compiler configuration file. The [-s] or [--static] option can be used to
build a static executable. Normally, this option should not be used since it restrict the use
of extension modules. The [shared] controls whether or not the dynamic libraries should
be built. This option is detected automatically for a particular platform and should be used
only by package maintainer. There exists also specific options which are mostly for package
maintainers. At this time, the build process integrates the Debian, Ubuntu and Fedora
specific packaging mechanism.

2.4. Compiling the distribution. The compilation process is straightforward. With
some platforms, the make accepts the [-j] that enables concurrent operations.

2. INSTALLATION PROCEDURE 61

Option Description Default

—pkgnam Set the distribution package | none

—pkgbin Set the optional package bin | none
directory

—pkglib Set the optional package lib | none
directory

—pkgprj Set the optional package prj | none
directory

—pkghdr Set the optional package hdr | none
directory

—pkgetc Set the optional package etc | none
directory

—pkgman Set the optional package | none
man directory

—pkgdoc Set the optional package doc | none
directory

—pkgwww Set the optional package | none
www directory

—pkgsrv Set the optional package srv | none
directory

zsh> make [-j]

This will build the complete distribution locally. If an error occurs, it is best to report
it at the (bugs@afnix.org) AFNIX bug report mail address.

2.5. Testing the distribution. The distribution contains all test suites. The test
suites are compiled and executed with the following command.

zsh> make test

This command run the test suites for each library as well as the test suites for each ap-
plication client. Most of the base library test suites are written in C++ with the application
test suites written in the core writing system.

2.6. Installing the distribution. Once the system has been built and tested, it can
be installed. By default, the distribution tree is installed into the /usr/local directory.
This can be overwritten with the [--prefix] option during the configuration process.

zsh> make install

There are several variables that controls the behavior of the install rule. Each variable
has its default value sets during the setup configuration. However, this variable can also be
altered during the installation process

2.7. Installing the documentation. The documentation is installed independently
of the software. The doc rule builds the documentation and the publish rule installs the
documentation. Several variables also control the documentation installation path.

2.8. Cleaning the distribution. The distribution is cleaned with the clean rule.

zsh> make clean

This rule does not clean the configuration. For a complete cleaning the reset rule is
more appropriate.

O © 000U R WN

J—

62 A. INSTALLATION GUIDE

Variable Description Default

PREFIX The root install directory Jusr/local

SHRDIR The shared install directory | /usr/local/share

ALTDIR The shared alternate direc- | /usr/local/etc
tory

SDKDIR The system kit directory platform dependent

BINDIR The binary install directory | prefix/bin

LIBDIR The library install directory | prefix/lib

HDRDIR The header files install di- | prefix/include/afnix
rectory

ETCDIR The extra files install direc- | altdir/etc/afnix
tory

Variable Description Default

DOCDIR The documentation install | shrdir/doc/afnix
directory

MANDIR The manual pages install di- | shrdir/man
rectory

zsh> make reset

3. Running AFNIX

The axi command invokes the interpreter. In order to operate properly, the LD_LIBRARY _PATH
environment variable must be configured with the directory containing the shared libraries.
If the libraries have been installed in a standard location like /usr/local/lib , there is
nothing to do.

3.1. Running some examples. The directory exp contains various examples which
can be run. Each example is labeled according to their use in the volume 1 of the documen-
tation set. Example 0101.als prints the message hello world . Example 0501.als prints
various information about the system configuration.

zsh> axi EXP0501

major version number : 3
minor version number : 8
patch version number : O
interpreter version : 3.8.0
program name : axi

operating system name : linux
operating system type : unix
machine size : 64

afnix official uri : http://www.afnix.org

4. Special features

The build process provides several features that permits to customize the compilation
process as well as the nature of the final executable. Most of the time, these options are
reserved for the package maintainer and are given below for illustration purpose.

4. SPECIAL FEATURES 63

4.1. Special target extensions. Extensions are specific libraries or executables which
are not build automatically during the build process. The user is responsible to decide which
extension is needed for the system All extensions are located under the src/ext directory.
Simply going into the appropriate directory and running the make command will build the
extension.

The asi extension creates a static interpreter with all libraries automatically included
in the final executable. The extension is simply build with the following command. Note
that this extension overwrite the previous executable in the bld/bin directory.

zsh> make -C src/ext/asi

4.2. Extra files. The distribution comes with some extra files. The most important
is the Emacs mode afnix-mode . The original source file is written in Emacs Lisp and is
available in the etc directory of the distribution. This file should be installed according to
the current Emacs installation.

APPENDIX B

Maintainer notes

This chapter contains additional notes for the package maintainer. They are also useful
for anybody who is in charge of integrating the distribution in a build process. The chapter
describes the distribution tree with more details.

1. The distribution tree

The distribution tree is composed of various directories. Each of them has a Makefile
which can be called locally or from the top level.

cnf

This directory contains the configuration distribution and various utilities. Nor-
mally you should not touch it, unless you are using a compiler different than gcc.
src

This directory contains the complete source tree. The source code is written in
C++. Normally this directory is left untouched. If there are good reasons to
modify it, please contact the development team.

tst

This directory contains the complete test suites. The test suites are used by various
programs including the main interpreter, the compiler and the debugger. It shall
be noted that the library distribution also includes specific test suites.

doc

This directory contains the complete documentation written in in XML with a
special DTD. It should be left untouched.

etc

This directory contains various files associated with the distribution. Some files
are useful to be copied.

exp

This directory contains various examples. They are included for illustration pur-
pose.

The process of building a package solely depends on the distribution type. Most likely,
the standard distribution should contain the binary executables as well as some configuration
file and the manual pages. The documentation and the development header files can put in
separate packages.

2. Configuration and setup

The configuration process involves the use of the afnix-setup command located in the
cnf /bin directory. This command is used to configure the distribution. Package maintainers
are encouraged to use it with specific options.

2.1.

Platform detection. The afnix-guess command is used during the configura-

tion process to detect a supported platform. This command can be run in stand-alone mode.
Various options can be used to tune the type of information requested.
Without option, the utility prints a platform and processor description string.

65

66 B. MAINTAINER NOTES

Option Description

-h Print a help message

-n Print the platform name

-v Print the platform version

-M Print the platform major number
-m Print the platform minor number
-p Print the processor name

zsh> ./cnf/bin/afnix-guess
linux-5.4-x64

2.2. Platform defaults. The directory cnf/def contains a platform specific default
file. The file determines what is the default compiler and linking mode. This file is used by
the afnix-setup command. For example, the afnix-darwin.def file contains:

compiler: gcc
lktype : dynamic
lkmode : dylib

Such options instructs the configuration utility, that the default compiler is gcc and
the linking mode should operates in dynamic mode by using the [dylib] rule. These
default values can be overwritten with the equivalent option of the afnix-setup command.
Note that the compiler version is automatically detected by the system. The afnix-vcomp
command will return the appropriate compiler version running on the target system.

2.3. C++ source file conventions. THe source tree has two types of C++ files.
The first type has the extension .cxx and the second type has the extension .cpp . The
.cxx — and the associated .hxx — files are only used to indicate a system dependency. These
files are found only in the src/1ib/plt directory. The .cxx extension indicates that the
file might use system specific include files. The .cpp — and the associated .hpp — files are
the normal C++ source files. The .cpp extension is used to indicate that these files will
not use a system specific file. By default this rule is enforced in the compiler configuration
file by specifying some compiler flags which do not authorize such access.

2.4. Configuration files. The configurations files are located in the cnf/mak direc-
tory. Normally they should be left untouched. The most important one is the afnix-rule.mak
file that defines most of the compilation and linking rules. Additionally, during the setup
operation, the afnix-setup command creates several files in the bld/cnf directory. The
bld is the build directory. The afnix-plat.mak file is the platform configuration file and
the afnix-comp.mak is a link to the appropriate compiler configuration file.

3. Compilation

Normally, the compilation process is immediate. Just invoking the make command will
do the job. However, some package maintainer have the desire to overwrite some flags. Some
options are provided to facilitate this task.

¢ EXTCPPFLAGS
This flag can be used to add some compilation flags for all .cpp files.
¢ EXTCXXFLAGS
This flag can be used to add some compilation flags for all .cxx files.
¢ EXTCCDEFINE
This flag can be used to add some compilation definitions for all source files.

5. SPECIFIC MAKEFILE RULES 67

¢ EXTINCLUDES
This flag can be used to add some compilation paths for the .cxx files.
For example, it is common to have some maintainer to compile with both the debug
and optimize flags. This can be done with the following command (assuming an optimized
configuration):

make EXTCPPFLAGS=-g EXTCXXFLAGS=-g

All include files, compiled libraries and executables are placed in the bld directory.
This directory contains the bld/bin for binaries, b1ld/1ib for libraries and bld/hdr for the
header files.

4. Building the package

The package can be built by accessing the bld directory or by invoking the install
rule. The second method is not recommended for package construction, since it might trigger
some file installation without any control.

The etc/unx directory contains some special files that might be used for the package
construction. A sample list of them is given hereafter.

e afnix-mode.el
This file is the Emacs mode.
e afnix-gud.el
This file is the debugger Emacs gud mode.

5. Specific makefile rules

The top level Makefile contains several rules that might be useful for the package
maintainer.

e status
This rule show the configuration status for each parameters with the version.
e debug
This rule invokes the default configuration in debug mode.
e optimized
This rule invokes the default configuration in optimized mode.
e build
This rule invokes the default configuration in debug mode and compile the whole
distribution. The default install directory is /usr/local.
e world
This rule invokes the default configuration in optimized mode and compile the
whole distribution. The default install directory is /usr/local.

o test

This rule runs all test suites.
e doc

This rule builds the documentation.
e distri

This rule builds the distribution.
e install

This rule installs the distribution.
e publish

This rule installs the documentation.
e clean

This rule cleans the distribution but keep the configuration.

68

B. MAINTAINER NOTES

e reset
This rule resets the distribution including the configuration.

APPENDIX C

Release notes

This chapter contains the release notes for the different releases. Release notes are given
in descending order for a particular version. The standard notation is major.minor.patch
which represents respectively, the major, minor and patch number. A major version number
changes indicates a substantial change in the distribution, including new tools, application
interface and license. A minor version number change indicates noticeable change, with
or without new tools but without application interface change nor license change. Finally,
a patch number change indicates a simple change to fix problem. There is no additional
features in a patch nor an application interface change.

1. Release 3.8

e Core engine: release 3.8.0
This is a medium release in line with the previous release which integrates some
fundamental restructuring of the core interpreter in preparation for distributed
execution. The module object has been refactored as well as the debugger.

e Core engine: hyper threaded interpreter
A new object called an hyper-threaded interpreter which operates with a grid
provides a mechanism to executes module inside an executing interpreter. This is
still an experimental technology.

e Core modules: tcz service
The csm service has been refactored as a transmutable content zone service.

2. Release 3.7

e Core engine: release 3.7.0
This is a medium release in line with the previous release which integrates various
extension and cleanup before major release 3.8 scheduled for the end of the year.
e Core engine: new special forms and continue
Two new special forms, break and continue, have been added to control loops.
e Core modules: gfx module
The graph module has been revisted with numerous cleanup. A new state machine
object called Automaton has been added.
e Core modules: sys module
An absolute wait time call has been added to act as a timer.
e Core modules: nwg module
A new class called Iso has been added. In particular, support for ISO 3166 has
been added.

3. Release 3.6

e Core engine: release 3.6.0
This is a medium release which integrates a lot of cleanup as well as the beginning
of the integration of the tls service. The unicode database has been updated to

69

70

C. RELEASE NOTES

the latest 14.0.0 release. Some objects have been completely refactored, including
base string vector.

Core modules: mth module

Algebra with complex number has been added including computation algorithm
with Hilbert space.

Core modules: nwg module

The json reader/writer has been enhanced to support plist.

Core modules: sec module

The pkes signature algorithm has been added. It is designed for the support of
ephemeral Diiffie-Hellman in the tls service.

Core services: tls service

The tls service has been enhanced to support ephemeral Diiffie-Hellman. The
integration of the tls inside applications will be able to start.

4. Release 3.5

Core engine: release 3.5.0

This is a important release which integrates numerous objects that were long over-
due, including the support for complex numbers and numerous code cleanup. An
undetected (until now) interlocking bug in the string split method has been dis-
covered and fixed. Various encoding bug have also been fixed including one in the
readline method.

Core modules: mth module

Prime number generation has been improved for speed, especially with safe prime.
The quaternion object has been added.

Core modules: nwg module

Form encoding and decoding has been enhanced. A json reader/writer has also
been integrated.

Core modules: sec module

The dsa pki has been added with support for dsa parameters. The dh key support
has been added. The concept of key configuration and renewal has been added.
Core modules: xml module

The module has been cleaned for simplex reader/writer design. The node formating
generation has bee enhanced with indentation support.

Core services: tls service

Pkes8 support has been added with a better integration of key generation. Server
name in extension is now supported.

Core services: csm service

Datum and magma parts have been added along a general service cleanup. The
concept of transmuter has been developped as a mixture interface. The blob view
construction has been revisited.

5. Release 3.4

Core engine: release 3.4.0

This is a a minor release which integrates more support for the tls service. Safe
prime number generation has been added. The assert special form has been en-
hanced to better support real testing.

Core modules: mth module

Real vector, point and matrix of size 1,2,2 and 4 has been added.

8. RELEASE 3.1 71

Core modules: sec module

The gem mode has been added. The elliptic curve objects and its associated arith-
metic has been integrated. Tests with the standard curves have been incorporated.
Core modules: sys module

The date and time object have been enhanced to support extended time with real
precision below the second. A now constant is also available for setting the current
date and time.

Core services: tls service

The aes-gcm mode has been added as a cipher.

Core services: phy service

Direct access to physical constants has been added. The unit string representation
has been enhanced to support the scaling factor.

6. Release 3.3

Core engine: release 3.3.0

This is a major release with a complete re-factoring of the interpreter evaluation
hierarchy. Internally, some objects are being rewritten with a c4+4/17 semantic.
Many objects have also been optimized to support very long strings. The serial-
ization coding has also been revisited. A serious bug with negative proleptic date
has been fixed. Another bug with the object iterator has also been fixed.

Core engine: Unicode 13.0.0

The Unicode standard, revision 13.0.0, has been incorporated in the core engine.
Core engine: asynchronous evaluation

The special form future creates a special object called a future which is used to
evaluate an object asynchronously. The evaluation starts with the help of the force
special form. The sync special form can be used to synchronize with the future.
Core modules: mth module

The numeral block has been enhanced to support row /column order and line/block
padding and the interface has been considerably enhanced.

Core services: phy service

The Unit object has been added to support the definition of physical unit. The
physic constants and the periodic table has been re-factored.

Core services: dip service

The geo service has been removed and the image objects have been moved to a
new service called dip.

7. Release 3.2

Core engine: release 3.2.0
This is a minor release issued for synchronization with other projects.
Core engine: Numeral object
The numeral object has been completely re-factored including the api at the math
module level.
Core modules: nwg module
A generic json writer has been implemented and the corresponding json mime
object has been updated.

8. Release 3.1

Core engine: release 3.1.0
This is a major release which new standard objects as well as the first distribution of
the tls. Release 3.0 was an internal release which is will not be publicly distributed.

72

C. RELEASE NOTES

The debian distribution has been fully integrated and the build system revisited
to account for new platforms.

Core engine: Unicode 12.1.0

The Unicode revision 11.2.0 has been incorporated in the core engine.

Core engine: Task and structure

The core engine has been enhanced to support the concept of task. A Task is
similar to a thread object, but can be used directly at the api level. A new
Structure object has been added to support object aggregation. engine.

Core modules: net module

The buffer read and socket sapf (socket address protocol family) have been fixed.
The Autocom object has bee added to support socket re-connection.

Core modules: nwg module

The IPV6 address representation in uri has been fixed. The Hyperlink object has
been added.

Core modules: geo module

The Netpbm object has been fixed for inconsistent block delete. The Pixmap stride
has been fixed.

Core modules: sec module

The Sha-3 family of hashers has been added. The Kdf2 function has bee refactored
to support the Pbkdf2 standard. Support for Galois field has been added. The
Gcem cipher has been added.

Core modules: sps module

The csv split and validation process has been added. The Transit has been revis-
ited.

Core modules: mth module

The integer vector object Ivector has been added. The float vector Fvector has
been added. Random vector generation has been added.

Core modules: sys module

System wait on kill has been added.

Core services: csm service

The csm objects have been considerably re-factored. Notably the Part and Blob
objects.

Core projects: adp project

The standard documentation processor has been enhanced with more option for
better distribution support.

9. Release 2.9

Core engine: release 2.9.3

Immediate release which fixes a potential deadlock in the output stream object.
Core engine: release 2.9.2

Small revision release with small allocator fixes, doc improvements and 32 bits
inconsistencies removal. The support for ’clang’ compiler has been updated as
well. A patch with support for the RISCV processor has also been incorporated.
Core engine: release 2.9.1

Small revision release with minor improvements for IPV6 address support.

Core modules: nwg module

The Uri object has been enhanced to support numerical ip address notation with
brackets.

Core modules: net module

The Address object has been enhanced to support numerical ip address detection.

10. RELEASE 2.8 73

Core engine: Unicode 11.0.0

The Unicode revision 11.0.0 has been incorporated in the core engine.

Core engine: serialization revisited

The core engine serialization has been revisited to account for a larger number of
modules and services.

Core engine: default hash revisited

The core engine hash function is now based on the Fowler-Noll-Vo algorithm.
Core engine: logger object revisited

The core engine logger object has been completely redesigned with a simpler in-
terface.

Core modules: nwg module

The base 64/32/16 codec have been added as a single object Basexx.

Core modules: sec module

The security module has been enhanced with a new signature base class.

Core modules: wgt module

The widget module has been added to the core distribution. At this time, the
module contains expressable and conditional objects.

Core services: csm service

The content session management service has been largely refactored.

Core services: geo service

The geometry service has been enhanced to support image and pixmap. A netpbm
reader/writer has been added as well.

10. Release 2.8

Core engine: release 2.8.3

Release with GCC 8 support.

Core engine: release 2.8.2

Intermediate release with GCC 8 support.

Core engine: release 2.8.1

Incorporated patches for GCC 7.

Core engine: Unicode 9.0.0

The Unicode revision 9.0.0 has been incorporated in the core engine.

Core engine: Collectable objects

The Collectable object is now being deployed inside the engine. A colletable object
provides a release method which can be used to remove links between object.
Core engine: full dupleix stream

A full dupleix object has been added as a generic object. A full dupleix stream is
provided for certain class of object like the network socket. The default mode of
operations remains the half-dupleix stream since stream access are protected by
mutexes.

Core modules: mth module

The math module incorporates an infix notation parser module. This is a prelim-
inray work suppoosed to grow over the next releases. The mean, covariance and
univariate regression has been added as objects.

Core modules: sps module

The bundle object literal index has been updated to follow the bundle length.

74

C. RELEASE NOTES

11. Release 2.7

Core engine: release 2.7.0

Minor platform updates. This is an internal release in preparation for the 2.8.0
release.

Core modules: net module

Revisit socket options and parameters

Core services: csm service

Minor fixes with the agent accessor.

12. Release 2.6

Core engine: release 2.6.3

Incorporated patches for GCC 6.

Core engine: release 2.6.2

Incorporated patches for Debian issued by maintainer.

Core engine: release 2.6.1

Fixed the FreBSD build.

Core engine: release 2.6.0

This is the relase 2.6.0. The code has been updated to better support c++/11 for
both gce and clang.

Core modules: xml module

The processing of character entity reference has been substantially changed to
adhere fully with the xml specification.

Core modules: sps module

The spreadsheet importer has been updated and a csv reader has been added. The
importation process has also been revisited.

Core modules: sec module

The security module has been updated to support the tls. This include moving to
a 6 bits mersenne-twister and adding a certificate block.

Core modules: mth module

The normal deviate has been added.

Core services: geo service

A new geometry service has been adedd to the distribution. This provides support
for modeling various shapes and solids.

Core services: cda service

The streamable objects has been added to the crowd data analytics service.

13. Release 2.5

Core engine: release 2.5.2

This is the relase 2.5.2. The release includes support for the GCC 5 / CLANG 5
compilers suite. Thank’s to Martin Michlmayr for pointing this out.

Core engine: release 2.5.1

This is the relase 2.5.1. This is an emergency release that fixes a bug in the uri
percent encoding which can be downloaded from here . It’s amazing that it was
not found before.

Core engine: clang compiler with C++11 support

The system infrastructure has been cleaned to support the clang compiler. The
code has also been cleaned to support the C++11 standard which is now the
compilation default.

Core engine: standard library

A Style object to support ina generic way the formating operation for the literal

14. RELEASE 2.4 75

objects. Consequently, most of the literal objects have been cleaned and now
support a format method that operates with a Style argument. The PrintTable
object has been enhanced to support column extension and column style.

Core modules: mth module

The In method is now the standard prefered name for the natural logarithm. Sev-
eral bugs have been fixed in the real matrix implementation with respect to the
openmp implementation. A new solver based on the Modified Gram-Schmidt al-
gorithm. has been added. Note also that the direct solver interface has been
updated.

Core modules: nwg module

The Uri class has been enhanced to support partial uri path extraction.

Core modules: sps module

The spreadsheet module has been considerably overhauled. A new object Lstack
has been added as a literal stack which can be bound to the cell as a literal array.
The sheet formating has been also revisited to make profit of the new Style object
has well as the printable transformation.

Core modules: sys module

The Meter object has been added as a mean to help for the performance measure-
ments.

Core module: xml module

The unicode conversion with reference has been updated to adapt itself to the
stream or buffer encoding during a write process.

Core services: phy service

A preliminary set of nuclear physics constants have been added.

Core services: csm service

The Workspace object has been enhanced to support output stream.

Core services: web service

A JsonMime object has been added. It is designed to translate various object
into a Javascript object notation format. At this time, only the real data samples
Rsamples object is supported.

14. Release 2.4

Core engine: unicode 6.3.0

The Unicode 6.3.0 database is now supported in this release.

Core engine: containers

The standard object incorporates an alias table which enables the mapping of
property name in a plist. The Trie object has been enhanced to support a reference
index. The trie name mapping is now obtained with the to-names method.

Core engine: parallel support

This release incorporates an experimental support for OpenMP. The OpenMP
threads are compatible with the afnix threads and support is initially available in
the math module. This option must be enabled explicitelly in the build setup to
be effective.

Core engine: crowd service

The session user registration id has been enhanced. The concept of crowd service
is available throuh the generic Xaas object, and more specifically with the Saas
object. The Workspace object has been enhanced with a public zone.

Core modules: sio module

The Intercom object has been enhanced to support a buffered serialization which
was somehow mandatory when operating in udp mode.

76

C. RELEASE NOTES

Core modules: net module

Numerous deadlocks in the socket class have been fixed as well as udp inconsisten-
cies.

Core modules: mth module

The Qmr Krylov solver has been added as part as the iterative solver family. The
krylov convergence test has also been improved. The Qr solver has been added as
part as the direct solver family. The sparse matrix has been enhanced to support
a generic iterator. The whole solver architecture has been revisited and is now
a class based architecture with a type driven factory. Numerous bugs have been
fixed. Vector and matrix now support row permutations.

15. Release 2.3

Core engine: release 2.3.2

This is the relase 2.3.2. The release fixes the real samples array serialization.
Core engine: release 2.3.1

This is the release 2.3.1. Release 2.3.0 was an internal work which has not been
distributed.

Core engine: interpreter line read

The interpreter object can read a line or a passphrase from the attached terminal.
Core engine: interpreter daemon and librarian

The interpreter can be put in daemon mode. This mean that a new detached
processed is spawned with the interpreter attached to it. The librarian has been
simplified and the loader integrated inside the interpreter.

Core engine: input stream

The input steam nom implements a stream consumption method designed to ac-
cumulate a stream content into the stream buffer. Subsequently, the buffer can be
converted into a string. The serialization of eos has been fixed.

Core engine: string resolver

The resolver has been enhanced to map a file into a string. This methodology also
applies to file present in a librarian.

Core engine: property list

The Plist object has been enhanced to better support the merging operation.
Core engine: unicode 6.2.0

The Unicode 6.2.0 database is now supported in this release.

Core modules: mth module

The real matrix and vector implementation has been redesigned to support a
unique sparse representation. The serialization has also been added to these ob-
jects.

Core services: csm module

The crowd object set has enhanced with an intercom crowd object which simplify
the transmission of registered crowd object. A cart and a cart set object have been
added as a mean to store crowd object. The session object and sessions set objects
have been added. The session object has been enhanced to produce the associated
session cookie, with an augmented session closing mechanism.

Core modules: nwg module

The UriPath object has been added as a uri path manipulator for http server.
Core services: phy service

The silicon energy gap has been fixed to the standard value. The periodic table
structure has been revisited.

Core services: wax service

The xhtml form elements have been added to the service. A base element class

17. RELEASE 2.1 s

has been also added to almost all elements. The base class provides support for
setting the common element attributes.

16. Release 2.2

Core engine: hurd platform

The Hurd platform is now supported in this release. Thanks to our contributor
for delivering this new platform.

Core engine: unicode 6.0.0

The Unicode 6.0.0 database is now supported in this release.

Core engine: object updates

The lexical analyzer is now an object in its own. It can be used to construct other
object from a string description.

Core modules: mth module

An automatic linear system verification has been added to the linear solver. Jacobi
preconditionner have been added to the Krylov solvers and Newton solvers have
been improved.

Core services: phy service

The periodic table of the elements is under construction and should be completed
soon. The table will provides the information for each elements, including name,
symbol and other physical constants. The suport for intrinsic carrier concentration
is now available. This is a cryptic feature for people working on semiconductors.

17. Release 2.1

Core engine: superh processor

The SuperH processor is now supported in this release. The SuperH is a 32 bits
processor.

Core engine: nan real number

The implementation now supports the concepts of Not a Number or NAN as a
whole. A real object can set and tested for NAN.

Core engine: indirect librarian resolver

The resolver has been enhanced to support indirect librarian reference.

Core modules: csm module

The personnal information management module has been renamed into the crowd
session management or afnix-csm module.

Core modules: mth module

The math module has been dramatically enhanced. The Rsamples object has been
added for storing data samples. Function and polynomial objects have added to
support generic function computation. The non-linear Newton system solver has
been added as an object.

Core services: svg service

The Scalable Vector Graphic service has been added. The service provides the
support for the SVG 1.1 standard and allows the automatic generation of SVG
compliant code.

Core services: phy service

The Physics service has been added. The service provides the support for standard
physics operations. In particular, the most common physical constants are defined
in this service.

78

C. RELEASE NOTES

18. Release 2.0

Core engine: standard objects

The BlockBuffer object has been added to the standard object library. Further-
more, the Buffer has been adapted to operate as a base class for the block buffer
and the shl method has been added to the buffer object as a mean to shift the
buffer. As consequence, the default operating mode for a buffer is the BYTE mode.
When operating with strings, the UTF8 mode might be more suitable. The BitSet
object has been renamed to Bitset and the interface has been cleaned. The Vector
has been cleaned. The object-p predicate has been fixed.

Core engine: thread engine

The thread engine has been completly redesigned and extensivelly tested on 32
and 64 bits platforms. It is no longer a problem to operate with more than 32K
threads simultanesouly. Furthermore, the concept of thread pool has been added
to the engine. The end-p predicate has been added to the thread object to indicate
a succesful thread completion.

Core engine: form reader

The Reader object has been added as a form reader. The reader parses an input
stream and produces a form until the end-of-stream. The Reader provides the
support for string based execution.

Core engine: default librarian module

The Librarian object has been enhanced to support the concept of default exeution
module. When such module and when the interpreter is requested to do so, the
module is automatically loaded during the execution.

Core modules: nwg module

The HttpProto default version has been move to 1.1 for both the request and
response objects.

Core modules: sio module

The InputMapped class has been enhanced to provide the facility for mapping
buffer as well as acting as a null character generator. The OuputBuffer object
has been added as a buffer output stream. With the addition of a form reader,
the interpreter communication class Intercom has been added to the standard i/o
module.

Core modules: xml module

The XneCond object has been enhanced to support various xml object. The XmlPi
has been enhanced to support attributes derivation from the string value.

Core modules: itu module

The itu module is a new module. It has been added with a complete support for
the ASN.1 standard. ASN.1 is essential for the support of certificates.

Core clients: axs client

The axs client has been removed from the core distribution. All of the client
functionalities are now available in the spreadsheet module.

19. Release 1.9

Core engine: object unreference

The long awaited unref reserved keyword has been added as a mechanism to un-
reference a symbol.

Core engine: object predicate

The object-p predicate has been added as a standard predicate. The predicate
is the negation of the nil-p standard predicate. The method-p predicate has also
been added as a standard predicate.

20. RELEASE 1.8 79

Core engine: stop/resume parsing

The file stream parsing has been enhanced with the help of the stop < and resume »
characters. When the stop characters is found, all parsing operations are suspended
until a resume character is found.

Core engine: extended exception attribute

The about symbol has been added to the exception object as extended exception
reason. For a given reason, the file name and line number is added to the exception
reason.

Core engine: string objects

The Strvec string vector class has been added to the core library. The class is sim-
ilar to the Vector class except that it operates with strings and provides additional
strings related methods.

Core engine: counter object

The Counter object has been added as a reserved object. The counter is designed
to be used directly in loop.

Core engine: library cleaning

The core library has been extensively cleaned in preparation for the next major
release. In particular, numerous memory leaks have been removed and some classes
derivations have been fixed. A major bug in the closure argument counting has
also been discovered and fixed during this process.

Core module: sio module

The Pathname object has been enhanced to detect the type of path associated
with the object. Additionally, a normalize method has been added.

Core module: sio module

The FileInfo object has been added to the module. The class provides an immediate
access to the principal file parameters such like it size or its modification time.
Core module: sio module

The NamedFifo object has been added to the module. The class provides the
support for a large string based fifo with file saving capabilities.

Core modules: nwg module

Several predicates and functions related to media type conversion have been added
to the module. In particular, a media type extension conversion has been imple-
mented. The HttpResponse class has been enhanced with several methods for
status code checking.

Core modules: sec module

Support for the Digital Standard Algorithm, (aka DSA) as specified by FIPS-PUB
186-3 has been added to the library. The implementation incorporates several new
objects to manipulate signatures.

Core modules: sec module

The RC2 block cipher algorithm has been added to the module.

Distribution: documentation

The documentation distribution rules have been rewritten and the ”publish” rule
has been added.

20. Release 1.8

Build process: reset rule

The distclean top level makefile rule has been renamed as reset.

Core engine: stream object

The stream engine has been cleaned with a new architecture. Two new objects
InputStream and OutputStream acts as the foundation of this new design.

80

C. RELEASE NOTES

Core modules: nwg module

The HttpProto, HttpRequest and HttpResponse objects have been completely
rewritten. In the new model, both objects can operate on the server and client
side. The HttpReply object has been removed.

Core modules: sec module

The Sha224 hash function has been added. This class concludes the implemen-
tation of all SHA family hash functions. The Des class that supports the DES
stream cipher has been added to the library.

Core modules: xml module

The XmlRoot class has been enhanced in order to ease the declaration node exis-
tence verification as well as the encoding mode extraction.

21. Release 1.7

Core clients: random engine seeding

A new option controls the seeding of the random engine. By default, in debug
mode, the random engine is not seeded unless requested by the user. In optimized
mode, which is the normal mode, the random engine is seeded at initialization.
Core engine: base number object

The long awaited base number object has been added. The Number object serves
the Integer, Real, and Relatif objects. The base number object is designed to ease
the task of formatting numbers.

Core engine: relatif number enhancements

The relatif number object has been enhanced to support extra methods that are
used for large number computation. This include the power and ged computation
which are used by the cryptographic engine. In addition, the base arithmetic relatif
methods have been optimized and certain corner bugs in the division fixed.

Core engine: unicode database

The core engine has been updated with the new Unicode 5.1.0 database.

Core engine: serious bugs

A serious bug in the form synchronize engine that would cause an engine crash
when a form is nil has been fixed.

Core modules: sio module

A new object called Pathlist has been added to support the manipulation of path
list. The object is designed to ease the file name resolution in the presence of
search path. The module has also been extensively cleaned.

Core modules: mth module

A new module called afnix-mth has been added to the standard distribution. The
module is designed to integrate the base mathematical functions and objects avail-
able in the engine. With such introduction, the random number generation has
been moved into this module. Additionally, the functions needed to generate prime
numbers have been added to this module.

Core modules: sec module

A new module called afnix-sec has been added to the standard distribution. The
module is designed to integrate the security functions and cryptographic objects.
Two new hasher objects have been added to the security module. The Md2 object
implements the MD2 message digest algorithm as described in RFC 1319. The
Md4 object implements the MD4 message digest algorithm as described in RFC
1320. The standard key derivation functions KDF1 and KDF2 have been added
to the security module. The asymmetric cipher RSA has also been added to the
security module and the Key object has been updated to reflect this.

23. RELEASE 1.5 81

22. Release 1.6

Core engine: object collection redesign

The core engine has been seriously modified to accommodate for a new object
collection system (aka garbage collection). The new system is more robust and
provides new mechanism that will permit to reclaim cyclic structure as well as
destroying global object on demand.

Core engine: macos x support

The core engine has been adapted to support the new MACOS X Leopard oper-
ating system.

23. Release 1.5

Core engine: unicode 5.0 support

The core engine continues to be updated in order to better support the Unicode
5.0 standard. With this release, the string normalization scheme is now in place
and used by default internally. This implies among other things, a better support
for multiple diacritics as well as the beginning of the standard collation algorithm.
Core engine: log file support

The Logger base class has been enhanced to support the generation of a log file.
An output stream can now be bound to the object.

Core engine: class defer support

The concept of class defer object has been added to the Class object. The defer
mode is the opposite of the infer mode and provides a mechanism for base class
creation.

Core engine: print table header

The PrintTable object has been enhanced to support the concept of table header.
Core engine: exception re-throwing

The exception object what can be thrown with the reserved keyword throw. This
provides a mechanism to re-throw an exception.

Core engine: critical bug with return form

A critical bug in the core engine affecting the behavior of the return reserved
keyword in a try block has been fixed. A return form inside a try block was
incorrectly generating an exception which was subsequently caught by the try
block.

Core modules: net module

The base network module has been enhanced to better operate with IPV6. In
particular, when both IPV4 and IPV6 stacks are present and a host name (typically
localhost) have an address entry, the socket constructor make sure it can build an
object. The IPV6 address display has been rewritten.

Core modules: sio module

A new object called Pathname has been added to support the manipulation of
system path. In addition, two new functions mkdir and mhdir have been also
added to support the directory creation, both normally and hierarchically.

Core modules: nwg module

The Uri has been dramatically enhanced to conform to the RFC 3986. In partic-
ular, the path representation for urn is now working properly. The cookie object
has been massaged to support the cookie version 1, although it does not seem to
be supported (yet!) by the browsers.

Core modules: xml module

The xml module has been enhanced with a new parsing system called the simple

82

C. RELEASE NOTES

model. In the simple model, nodes are parsed in a linear fashion. The node content
is available in the form of a string and its interpretation is at the user discretion.
Core service: wax service

The afnix-wam service has been renamed as afnix-wax. The service has also been
updated with two new objects, namely the XmlMime and XhtmlMime which per-
mits to build a mime representation of an xml tree. Several xhtml objects have also
been added to complete the collection. This include the XhtmlScript for example.
Core service: xpe service

The afnix-xpe service has been added as a new service. The xml processing envi-
ronment (xpe) provides a xml processor that permits manipulate the whole xml
tree with the help of various xml processor features. In particular, the service
provides the support for the xml include extension.

Core projects: apx project

This release incorporates for the first time, the concept of core project, which
represents a librarian or an application. The first project is the AFNIX pro-
tocol extension or apx which is a message based protocol designed to transport
request/reply messages within a client/server environment. The message is built
with the xml library and the librarian provides the encapsulation layer.

Core projects: amd project

The AFNIX media dumper or amd project is a complete application designed to
illustrate the design of an application. The application permits to dump an uri
content into a file.

24. Release 1.4

Core engine: unicode 5.0 support

The core engine has been substantially changed to support the new Unicode 5.0
standard. As of now, the engine is in place internally, but not fully activated. In
particular, the string normalization is implemented but not activated. The next
release should incorporate the full system with a change that should be transparent
to the user.

Core language: instance inference

An instance inference mechanism — which is equivalent to the concept of virtual
constructor — has been added to the core engine. Such system permits to derive
top instance from a base instance construction.

Core language: print table object

The PrintTable object has been enhanced with a dump method similar to the
format method.

Core language: property list object

The Property and the Plist objects have been added to the standard library. a
property is name/value pair. The property list object is an iterable object that
stores property objects.

Core modules: xml module

A new module called afnix-xml has been added. The module provides the founda-
tion for a full xml 1.0/1.1 support. The module also includes a parser that permits
to build xml tree. A xml tree writer is also part of the module functionality. A
xml processor is not yet available and is expected in the next release.

Core modules: nwg module

A new module called afnix-nwg has been added. The module provides the support
for the network working group objects such like Uri object. The module also
provides the foundation for the mime support.

25. RELEASE 1.3 83

Core modules: web module

The afnix-web module has been removed and replaced by the afnix-wam service.
Core service: wam service

The afnix-wam service has been added as the first service into the core distribution.
A service differs from a module in the sense that it is a combination of different
modules. The web application management service depends on the xml and nwg
modules. The service provides all the functionality to support a http session,
including xhtml page generation and cgi request reply.

25. Release 1.3

Core language: ISO-8859 transcoding support

The core engine has been modified to integrate a character transcoder that per-
mits the support all ISO-8859 codesets which are mostly used for the encoding of
european and arabic characters. Depending on the locale settings, the transcoder
automatically remaps the 8 bits characters into their respective unicode character.
All clients have been updated to detect their associated locale and to set auto-
matically the appropriate transcoder. A new option -e has been added to force a
particular encoding.

Core language: Logger base class

A logging base class has been added. The logging facility provides the interface to
store messages by time and level. This class is further extended in the modules.
Core language: Heap class

A heap class has been added. The heap can operate in ascending or descending
mode. This class can be used to support priority queue.

Core language: Option class

An option class has been added in order to ease the option capture when designing
an application. The class permits to define the valid options and offer a powerful
retrieval mechanism.

Core language: Date class

The Time class has been completely changed and a new Date class has been added.
The new mechanism provides a better separation between the time and the date,
increase the date range and authorizes the support for multiple calendar.

Client: cross spreadsheet client

The axs client has been modified to support the axs:insert-marker, axs:insert-
header and insert-footer control commands.

Core modules: speadsheet module

The Folio and Sheet classes have been substantially updated to support additional
information. The Sheet also supports the concept of markers that marks the sheet
columns by literals. The concept of column tagging has been added with the
associated search methods. All classes also contain an information field. The
importation mechanism now supports a cons cell that defines both the cell name
and the cell value.

Core modules: web module

The Table class has been modified to support the concept of table data header.
The associated methods have been added to the class and a new HtmlTh has been
added. The concept of tag propagation has also been added. If a tag element
already exists, this one is not added. This is particularly true for the class tag that
is now part of the class constructor. The HtmlPage class has been put in strict
conformance with xhtml 1.1 and the XHtmlpage class has been removed.

Core modules: pim module

A new module called the afnix-pim module has been added to the base distribution.

84

C. RELEASE NOTES

The personal information management or pim module is designed to ease the
management of personal information and agenda.

Core modules: gfx module

A new module called the afnix-gfx module has been added to the base distribution.
The module contains the base class that supports the graph data structure which
was previously part of the standard library.

26. Release 1.2

Core language: Unicode support

The core engine has been substantially modified to integrate the support for Uni-
code characters. Depending on the system settings the reader automatically adjust
itself to operate in byte mode or in UTF-8 mode. The String and Character classes
are now operating with a Unicode representation. The design of an Unicode based
engine also impacts several classes like the Regex, Buffer and stream classes. A new
class called Byte is also designed to handle byte character. A new stream model
with a base Stream class has also been added. The full support with Unicode
character is not yet completed. In particular, certain codesets are not supported
at all. This is particularly true with case-conversion functions.

Core language: orphan instance and reparenting

The object model now supports the creation of orphan instance which is an instance
without a class attached to it. The instance can be later bound to a class and such
class can even be changed during the course of the program execution.

Core modules: network module

The Address class has been updated to reflect the access to address aliases.
Core modules: text processing module

The Literate class has been updated to reflect the support of Unicode characters.
The class can operate both in byte mode or in Unicode character mode.

27. Release 1.1

Core language: Large file support

Support for the large file system has been added in the base distribution. All
input/output operations as long as they are supported by the operating system
are now done in 64 bits mode.

Core libraries: Secure hash algorithm

The cryptographic library incorporates the support for the SHA-1, SHA-256, SHA-
384 and SHA-512 hash algorithms.

Core libraries: Standard symmetric cipher

The cryptographic library incorporates the support for the Advanced Encryption
Standard (AES) as a symmetric cipher.

Core libraries: ODC library renamed

The ODC library has been renamed to SPS which stands for spreadsheet library.
This new name is considered more appropriate for the function the library achieves.
Core libraries: xhtml 1.1 support

The XhtmlPara class is now configured to support XHTML 1.1 with utf-8 encoding.
Documentation: XML based documentation

The documentation has been rewritten completely in XML. A DTD as well as
the necessary XSLT style sheets have also been designed to produce a professional
documentation which can be used for printing or for online browsing.

28. RELEASE 1.0 85

28. Release 1.0

The 1.0 release is the initial release. This release replaces the old ALEPH programming
language which has been discontinued.

e 04/19/2005: release 1.0.3
This release incorporates the necessary files that support GCC 4. It also provides
some minor fixes that were preventing the compilation on some 64 bits platforms.
e 03/02/2005: release 1.0.2
This release incorporates a minor fix that could cause the build process to fail.
e 02/16/2005: release 1.0.1
This release incorporates a minor fix that could cause the build process to fail.
e 01/16/2005: release 1.0.0
This is the primary release 1.0.0 which originated from the ALEPH programming
language and which has been discontinued. A complete history of the language is
provided in the description page.

* 12,19
+,12, 19
-, 12,19
., 44

., 8,44

ey 8

/, 12,19
58

#, 4

about, 44

abs, 20, 23
Accuracy, 24

add, 31, 32

advice, 58

alpha-p, 25

and, 12

args, 7, 9

Argument binding, 7
Arguments, 9
Arguments vector, 46
argv, 46

asin, 23

assert, 12

axl, 48

Binding, 8, 9, 14
Bitset, 34
blank-p, 25
block, 12

Block form, 5
Boolean, 12
boolean-p, 13

car, 31

cdr, 31

ceiling, 23

Cell, 14

Character, 24
character-p, 13
Class, 14, 35

class, 14, 35
class-p, 13

Closed variables, 55
Closure, 6, 35
closure-p, 13
Combining character, 26

Index

87

Command arguments, 3
Comments, 4

Compile client, 4
Completion, 17
Condition variable, 17, 54
Condvar, 17, 55

Cons, 14, 31

const, 4, 7-9

Constant argument, 7
Container, 31

cos, 23

defer, 41

delay, 16, 45

Delayed evaluation, 45
digit-p, 25

do, 10

dup, 48

Dynamic binding, 56

eid, 44

enum, 45

eol-p, 25

eos-p, 25

eval, 11

eval-p, 13
Evaluation, 5
even-p, 20
Exception, 15, 43
exp, 23

Factorial, 6
false, 12
Fibonacci, 20
File loading, 3
File resolver, 50
fill-left, 24, 26
fill-right, 26
floor, 23

for, 15, 33
force, 16, 45
format, 24
Forms, 5
Function expression, 55

Gamma expression, 6, 14
get, 32
get-enum, 45

88

get-object, 15

Hash code (String), 27
Hello world, 2

if, 10

infer, 41

Inheritance, 39
insert, 32

Instance, 14, 35, 36
Instance deference, 41
Instance inference, 41
Instance method, 37
Instance operator, 38
Instance re-parenting, 40
instance-p, 13
Integer, 19

Integer arithmetic, 19
Integer calculus, 20
Integer format, 19
integer-p, 13
Interactive mode, 2
Interp, 18

interp, 46

Interpreter, 18
Interpreter loop, 48
Interpreter object, 46
Interpreter options, 2
Interpreter version, 47
Item, 45

iterable, 33

Iteration, 14

Iterator, 15

iterator, 33

Lambda expression, 5, 6
launch, 16, 50

Legendre polynomial, 23
length, 26, 33

Lexical name, 56
lexical-p, 13

Librarian, 48

library, 48

Line editing, 3

link, 33

List, 32

Literal, 19, 21

literal-p, 13

load, 47

Locking, 51

log, 23

Logger, 46

Logger message, 46
loop, 11

map, 33
meta, 37
method-p, 13
mute, 40

Nameset, 8
nameset, 44

INDEX

nameset-p, 13

Native objects, 4
nil-p, 13, 25

not, 12

Number, 19, 21, 22, 24
number-p, 13

object-p, 13
odd-p, 20
or, 12

Parsing, 4
Predicate, 13
preset, 14, 36, 41
promise, 45
promise-p, 13
protect, 11, 56

Qualified name, 8, 56
qualified-p, 13
Queue, 34

Real, 22

Real functions, 23
real-p, 13

reason, 44

Regex, 16
regex-p, 13
Regular expression, 16
Relatif, 21
relatif-p, 21
return, 11

roll, 48

scalar-product, 33

self, 55

Self reference, 55

Set, 32

set, 32
set-absolute-precision, 24
set-car, 31
set-relative-precision, 24
Shared objects, 51

sin, 23

Special form, 5, 9

split, 26

String, 26

string-p, 13

strip, 26

strip-left, 26

strip-right, 26

sub-left, 26

sub-right, 26

super, 39

switch, 11

Symbol, 5, 8

Symbol access, 57
Symbol unreferencing, 9
sync, 17
Synchronization, 17, 52
System name and type, 47

tan, 23

INDEX

this, 14, 36
Thread, 16, 50
Thread completion, 52
Thread object, 51
Thread set, 51
thread-p, 13
throw, 15, 43
to-hexa, 21
to-hexa-string, 21
to-literal, 21
to-lower, 27
to-string, 21
to-upper, 27
trans, 4, 7, 8
true, 12

try, 15, 43

unref, 9

valid-p, 15
Vector, 32

what, 15, 43
while, 10
Writing structure, 4

)

>, 4
<, 4

89

